6.262: Discrete Stochastic Processes 3/28/11
Lecture 14: Review

The Basics: Let there be a sample space, a set of
events (with axioms), and a probability measure on
the events (with axioms).

In practice, there is a basic countable set of rv’s
that are IID, Markov, etc.

A sample point is then a collection of sample values,
one for each rv.

There are often uncountable sets of rv's, e.g., {N(¢); t >
0}, but they can usually be defined in terms of a ba-
sic countable set.

For a sequence of IID rv's, X, X5,... (Poisson and
renewal processes), the laws of large numbers spec-
ify long term behavior.

The sample (time) average is S,/n, S, = X1+ Xp.
It is a rv of mean X and variance o2/n.
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The weak LLN: If E[|X|] < oo, then

lim Pr{ Sn
n—oo n

X ze}zo for every € > 0.

This says that Pr{% gm} approaches a unit step
at X as n — oo (Convergence in probability and in
distribution).

The strong LLN: If E[|X]|] < oo, then

[im % =X W.P.1
n—oo n
This says that, except for a set of sample points of
zero probability, all sample sequences have a limiting

sample path average equal to X.

Also, essentially lim,— f(Sn/n) = f(X) W.P.1.

There are many extensions of the weak law telling
how fast the convergence is. The most useful re-
sult about convergence speed is the central limit

theorem. If 0% < oo, then
2
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Equivalently,
Pr{S— - X< —}
mn
In other words, S,/n converges to X with 1//n and
becomes Gaussian as an extra benefit.
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Arrival processes

Def: An arrival process is an increasing sequence

of rv's, 0 < S;{ < Sy < ---. The interarrival times are
Xi=8 and X;=S5,—S5,_1, 1 > 1.
X3
- Xo N(t)
e X .
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An arrival process can model arrivals to a queue,
departures from a queue, locations of breaks in an
oil line, etc.

— X N(t)

0 S1 S S3

The process can be specified by the joint distribu-
tion of either the arrival epochs or the interarrival
times.

The counting process, {N(t);t > 0}, for each ¢, is
the number of arrivals up to and including ¢, i.e.,
N(t) = max{n : Sy, <t}. For every n, t,

{Sn <t} ={N(t) 2 n}

Note that S, = min{t: N(¢t) > n}, so that {N(¢); t > 0}
specifies {S,; n > 0}.



Def: A renewal process is an arrival process for
which the interarrival rv’s are IID. A Poisson process
is a renewal process for which the interarrival rv’s
are exponential.

Def: A memoryless rv is a nonnegative non-deterministic
rv for which

Pr{X > t+z} =Pr{X >z} Pr{X >t} for all z,¢t > 0.

This says that Pr{X >t4z | X >t} = Pr{X >z}. If
X is the time until an arrival, and the arrival has
not happened by ¢, the remaining distribution is the
original distribution.

The exponential is the only memoryless rv.

Thm: Given a Poisson process of rate )\, the interval
from any given t > 0 until the first arrival after ¢ is
arv Zy with Fz (z) = 1 —-exp[-Az]. Z; is independent
of all N(r) for r <.

Z1 (and N(7) for 7 <t) are also independent of fu-
ture interarrival intervals, say 75, Z3,.... Also {Z1, Z>,
..., are the interarrival intervals of a PP starting
at ¢.

The corresponding counting process is {N(t,7); T >
t} where N(t,7) = N(7) — N(t) has the same distribu-

tion as N(r —t).

This is called the stationary increment property.



Def: The independent increment property for a
counting process is that for all 0 < t; < to < - -1,
the rv’s N(t1), [N(t1,t2)],...,[N(t,_1,tn)] are indepen-
dent.

Thm: PP’s have both the stationary and indepen-
dent increment properties.

PP’s can be defined by the stationary and indepen-
dent increment properties plus either the Poisson
PMF for N(t) or

Pr{N(t,t+5):1} = A+ 0(d)
Pr{N(t,t—|—5)>1} = o(9).

The probability distributions

fsq,..8,(515--- ,8n) = A"exp(—=Asp) for0<s; <---<sp
The intermediate arrival epochs are equally likely to
be anywhere (with s; < sy < ---). Integrating,

A Lexp(=At)
fs, () = T Erlang

The probability of arrival n in (¢t,t4+6) is
Pr{N(t) =n—-1}Xd = 6fg, (t) + o(5)

Pr{N(t) =n—-1} = fSnT(t)
() lexp(=At)
a (n—1)!
PNy(n) = (M) exp(=At) Poisson

n!
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Combining and splitting

If N1(t), N>(t),...,Ni(t) are independent PP's of rates
A, ..., A\, then N(t) = Y; N;(t) is a Poisson process of
rate > ; \;.

Two views: 1) Look at arrival epochs, as generated,
from each process, then combine all arrivals into
one Poisson process.

(2) Look at combined sequence of arrival epochs,
then allocate each arrival to a sub-process by a se-
quence of IID rv’s with PMF );/ 3" A;.

This is the workhorse of Poisson type queueing
problems.
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Conditional arrivals and order statistics

nl

g™ 1) = o FOr0<sy<-osp<t
t— 711"
Pr{Sl>T|N(t)=n}:[ t ] for 0 < r <t
t—T1]"
Pr{Sn<t—7-|N(t)=n}={ : for 0 <7<t

The joint distribution of Sq,...,S, given N(t) =n is
the same as the joint distribution of n uniform rv’s
that have been ordered.
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Finite-state Markov chains

An integer-time stochastic process {X,; n > 0} is a
Markov chain if for all n,?,j, k, ..

Pr{Xn =3 ‘ Xp_1=1t, Xn_2=k3 e onm} = Pz'ja

where P;; depends only on i, j and px,(m) is arbitrary.
A Markov chain is finite-state if the sample space
for each X; is a finite set, S. The sample space S
usually taken to be the integers 1,2,... M.

A Markov chain is completely described by {P;;; 1 <
i,j < M} plus the initial probabilities px (7).

The set of transition probabilities {Pij; 1 < 4,5 <
M}, is usually viewed as the Markov chain with PX,
viewed as a parameter.
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A finite-state Markov chain can be described as a
directed graph or as a matrix.

Py P -+ P

P>y P -+ P

Ps1 Ps2 -+ Pes
a) Graphical b) Matrix

An edge (i,j) is put in the graph only if P; > O,
making it easy to understand connectivity.

The matrix is useful for algebraic and asymptotic
issues.
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Classification of states

An (n-step) walk is an ordered string of nodes (states),
say (ig,%1,---in), n > 1, with a directed arc from i,, 1
to i, for each m, 1 <m <n.

A path is a walk with no repeated nodes.

A cycle is a walk in which the last node is the same
as the first and no other node is repeated.

_Ps gl walk: (4, 4, 1, 2, 3, 2)
Pi1 2 0 \yak: 4, 1, 2, 3)
Path: (4, 1, 2, 3)
Path: (6, 3, 2)

Pss Cycle: (2, 3, 2)

Cycle: (5, 5)

A node j is accessible from i, (1 — j) if there is a
walk from i to j, i.e., if Pg} > 0 for some n > 0.
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If (i —j) and (j — k) then (i — k).

Two states i,; communicate (denoted i < j)) if
(1 —j) and (j — 1).

A class C of states is a non-empty set such that
(1 j) for each 7,5 € C but i + j) for each : € C, j ¢ C.

S is partitioned into classes. The class C containing
ids {i}U{j: (i =5}
For finite-state chains, a state : is transient if there

isaje S such that ¢ — 5 but j; A4 i. If 7 is not
transient, it is recurrent.

All states in a class are transient or all are recurrent.

A finite-state Markov chain contains at least one
recurrent class.
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The period, d(i), of state i is gcd{n : P]! > 0}, i.e.,
returns to i can occur only at multiples of some
largest d(z).

All states in the same class have the same period.

A recurrent class with period d > 1 can be par-
titioned into subclasses S1,S57,...,54. Transitions
from each class go only to states in the next class
(viewing S; as the next subclass to S;).

An ergodic class is a recurrent aperiodic class. A
Markov chain with only one class is ergodic if that
class is ergodic.

Thm: For an ergodic finite-state Markov chain,
limg, P,Z} = 7;, i.e., the limit exists for all 7,5 and is in-
dependent of i. {m;; 1 < M} satisfies } ; m;P;; =7; >0
with ¥, m; = 1.
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A substep for this theorem is showing that for an
ergodic M state Markov chain, P{; > 0 for all 7,5 and
all n>(M—-1)241,

The reason why n must be so large to ensure that
Pg > 0 is indicated by the following chain where the
smallest cycle has length M — 1.

e @ Starting in state 2, the state
at the next 4 steps is deter-
@/ /® ministic. For the next 4 steps,
\@ there are two possible choices
: then 3, etc.

A second substep is the special case of the theorem
where P;; > 0 for all 4, 7.
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Lemma 2: Let [P] > 0 be the transition matrix of
a finite-state Markov chain and let o = min, ; P,
Then for all states ;3 and all n > 1:

J gt

miaxP;}"‘l - miin PZZ‘H < <m€axP£”j - mgin PZ}) (1 -20a).

(mgafoj — mgin Pg}) < (1 -2a)™

lim maxPﬁj = lim minPg”j > 0.

This shows that IimnPlZ@j approaches a limit inde-
pendent of ¢, and approaches it exponentially for
[P] > 0. The theorem (for ergodic [P]) follows by
looking at lim, Pg}h for h=(M—1)2+1.
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An ergodic unichain is a Markov chain with one er-
godic recurrent class plus, perhaps, a set of tran-
sient states. The theorem for ergodic chains ex-
tends to unichains:

Thm: For an ergodic finite-state unichain, lim, PZTJL. =
m;, i.e., the limit exists for all ¢, 5 and is independent
of i. {m;;1 < M} satisfies >, m;P;; = m; with >, m; = 1.
Also 7; > 0 for i recurrent and n; = 0 otherwise.

This can be restated in matrix form as lim,[P"] = en

where ¢ = (1,1,...,1)T and = satisfies n[P] = n and
e = 1.
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We get more specific results by looking at the eigen-
values and eigenvectors of an arbitrary stochastic
matrix (matrix of a Markov chain).

A is an eigenvalue of [P] iff [P — \I] is singular, iff
det[P — XI] = 0, iff [P]lv = \v for some v # 0, and iff
w[P] = Ar for some 7w #= 0.

€ is always a right eigenvector of [P] with eigenvalue
1, so there is always a left eigenvector «.

det[P—)\I] is an Mth degree polynomial in \. It has M
roots, not necessarily distinct. The multiplicity of
an eigenvalue is the number of roots of that value.

The multiplicity of A =1 is equal to the number of
recurrent classes.
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For the special case where all M eigenvalues are
distinct, the right eigenvectors are linearly indepen-
dent and can be represented as the columns of an
invertible matrix [U]. Thus

[P][U] = [U]IA]; [P] = [U]INI[U™Y]

The matrix [U~1] turns out to have rows equal to
the left eigenvectors.

This can be further broken up by expanding [A] as
a sum of eigenvalues, getting

M . .
Pl = Y Ao z0
i=1

M
[P = [UIINIUTY] = Y AP0 7(0)
1=1
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Facts: All eigenvalues )\ satisfy |\| < 1.

For each recurrent class C, there is one A\ = 1 with
a left eigenvector equal to steady state on that re-
current class and zero elsewhere. The right eigen-
vector v satisfies lim, Pr{X, € C| Xg =i} = ;.

For each recurrent periodic class of period d, there
are d eigenvalues equi-spaced on the unit circle.
There are no other eigenvalues with |\| = 1.

If the eigenvectors span RM, then P{; converges to
7; as A5 for a unichain where |)\>| is the is the second
largest magnitude eigenvalue.

If the eigenvectors do not span RM, then [P"] =
[U1[J][U~1] where [J] is a Jordan form.
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Renewal processes

Thm: For a renewal process (RP) with mean inter-
renewal interval X > 0,

N

lim ﬂ = i
t—oo t X

This also holds if X = co.

W.P.1.

In both cases, lim;_, N(t) = co with probability 1.

There is also the elementary renewal theorem, which
says that

lim E[wl :i
t X
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Residual life

N(t)
— X5
X
S1 52 S3 S4 SS S6
5
Y (¢t
2 . ()
1 6
3
t
5'1 5'2 S3 54 55 56

The integral of Y (t) over ¢ is a sum of terms X?2/2.
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The time average value of Y (t) is

f;fzo Y(r)dr _ E {XQ}

lim = W.P.1
t—00 t 2E [X]
The time average duration is
t E X2
—n X d
jim Jr=0 X(1)dr _ x?] W.P.1

t—00 t T E[X]
For PP, this is twice E[X]. Big intervals contribute
in two ways to duration.
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Residual life and duration are examples of renewal
reward functions.

In general R(Z(t), X (t)) specifies reward as function
of location in the local renewal interval.

Thus reward over a renewal interval is

Sn Xn
an/ R(r—S,_1, Xn) dT:/ R(z, X») dz
Sn—1 z=0
1t E(R
lim —/ R(r) dr = CLEn] W.P.1
t—oo t Jr=0 X

This also works for ensemble averages.
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Def: A stopping trial (or stopping time) J for a
sequence {X,; n > 1} of rv's is a positive integer-
valued rv such that for each n > 1, the indicator rv
H{J:n} iIs a function of {Xl,XQ, - ,Xn}.

A possibly defective stopping trial is the same ex-
cept that J might be a defective rv. For many ap-
plications of stopping trials, it is not initially obvious
whether J is defective.

Theorem (Wald’s equality) Let {X,;n > 1} be a se-
quence of IID rv’s, each of mean X. If J is a stop-
ping trial for {X,; n > 1} and if E[J] < oo, then the
sum S;= X1 + Xo 4+ .-+ X; at the stopping trial J
satisfies

E[S;] = XE[J].
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Wald: Let {X,;n > 1} be IID rv's, each of mean X.
If J is a stopping time for {X;,;n > 1}, E[J] < oo, and
S;=X14+Xo+---+ Xy, then

E[S;] = XE[J]

In many applications, where X,, and S,, are nonneg-
ative rv’s , the restriction E[J] < oo is not necessary.

For cases where X is positive or negative, it is nec-
essary as shown by ‘stop when you're ahead.’

29

Little’s theorem

This is little more than an accounting trick. Con-
sider an queueing system with arrivals and depar-
tures where renewals occur on arrivals to an empty
system.

Consider L(t) = A(t)—D(t) as a renewal reward func-
tion. Then L, = > W, also.

A(D)— Wa— ‘

' W, |D(7)

]
0

S1 t S
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Let L be the time average number in system,

_ 1 t
L=—1lim [ L(r)dr
t t—o0JO

o1
A= tlrgo zA(t)

A(t)
T PR

1 AW

t
= Im—llm— W;
t—>ooA(t) t—oo t Z

= T/A

S
|
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