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For a sequence of IID rv’s, X1, X2, . . . (Poisson and 
renewal processes), the laws of large numbers spec­
ify long term behavior. 

The sample (time) average is Sn/n, Sn = X1+ · · · Xn.
It is a rv of mean X and variance 2σ /n. 
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6.262: Discrete Stochastic Processes 3/28/11 

Lecture 14: Review 

The Basics: Let there be a sample space, a set of 
events (with axioms), and a probability measure on 
the events (with axioms). 

In practice, there is a basic countable set of rv’s 
that are IID, Markov, etc. 

A sample point is then a collection of sample values, 
one for each rv. 

There are often uncountable sets of rv’s, e.g., {N(t); t ≥
0}, but they can usually be defined in terms of a ba­
sic countable set. 
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The weak LLN: If E [|X|] < ∞, then 

lim Pr
����

 
S

�
n 

 − X 
���� ≥ �

�
 = 0 for every � > 0. 

n→∞ n

This says that Pr
�

Sn ≤ x
� 

approaches a unit stepn 
at X as n → ∞ (Convergence in probability and in 
distribution). 

The strong LLN: If E [|X|] < ∞, then 

Sn
lim = X W.P.1 

n→∞ n
This says that, except for a set of sample points of 
zero probability, all sample sequences have a limiting 
sample path average equal to X. 

Also, essentially limn→∞ f(Sn/n) = f(X) W.P.1. 
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There are many extensions of the weak law telling 

how fast the convergence is. The most useful re­

sult about convergence speed is the central limit 

theorem. If 2 σ < X ∞, then 
    Sn − 2nX y 1 x

lim Pr  y = exp 
−

dx. 
n→∞ 

� �

√
n σ 

≤
�� �

 
√

−∞ 2π 

�

2 

�

Equivalently, 
� �    Sn yσ y 1 

= exp
− 2x

lim Pr  
 n 

− X ≤ √ dx. 
n→∞ n 

�� �
√

−∞ 2π 

�

2 

�

In other words, Sn/n converges to X with 1/
√

n and 

becomes Gaussian as an extra benefit. 
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Arrival processes 

Def: An arrival process is an increasing sequence 

of rv’s, 0 < S1 < S2 < · · · . The interarrival times are 

X1 = S1 and Xi = Si − Si 1, i ≥ 1. −

X1 ✲

X2 

✛ 

✲

X3 

✛ 

✲✛ 

✻N (t) 

t 
0 S1 S2 S3 

An arrival process can model arrivals to a queue, 

departures from a queue, locations of breaks in an 

oil line, etc. 
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X1 ✲

X2 

✛ 

✲

X3 

✛ 

✲✛ 

✻N (t) 

t 
0 S1 S2 S3 

The process can be specified by the joint distribu­
tion of either the arrival epochs or the interarrival 
times. 

The counting process, {N(t); t ≥ 0}, for each t, is 
the number of arrivals up to and including t, i.e., 
N(t) = max{n : Sn ≤ t}. For every n, t, 

{Sn ≤ t} = {N(t) ≥ n}
Note that Sn = min{t : N(t) ≥ n}, so that {N(t); t ≥ 0}
specifies {Sn; n > 0}. 
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Def: A renewal process is an arrival process for 

which the interarrival rv’s are IID. A Poisson process 

is a renewal process for which the interarrival rv’s 

are exponential. 

Def: A memoryless rv is a nonnegative non-deterministic 

rv for which 

Pr{X > t+x} = Pr{X > x} Pr{X > t} for all x, t ≥ 0. 

This says that Pr{X > t+x | X > t} = Pr{X > x}. If 

X is the time until an arrival, and the arrival has 

not happened by t, the remaining distribution is the 

original distribution. 

The exponential is the only memoryless rv. 
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Thm: Given a Poisson process of rate λ, the interval 

from any given t > 0 until the first arrival after t is 

a rv Z1 with FZ (z) = 1 − exp[−λz]. Z1 is independent 
1

of all N(τ ) for τ ≤ t. 

Z1 (and N(τ) for τ ≤ t) are also independent of fu­

ture interarrival intervals, say Z2, Z3, . . . . Also {Z1, Z2, 

. . . , } are the interarrival intervals of a PP starting 

at t. 

The corresponding counting process is {Ñ(t, τ); τ ≥ 

t} where Ñ(t, τ) = N(τ) − N(t) has the same distribu­

tion as N(τ − t). 

This is called the stationary increment property. 
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The probability distributions 

 fS ,... ,S (s1, . . . , sn) = nλ exp( λ
1 n − sn) for 0 ≤ s1 ≤ · · · ≤ sn 

The intermediate arrival epochs are equally likely to 
be anywhere (with s1 < s2 < · · · ). Integrating,

1λntn−  exp(−λt)
fS (n t) = Erlang

(n − 1)! 

The probability of arrival n in (t, t + δ) is 

Pr{N(t) = n−1} λδ = δfS (n t) + o(δ) 
f (t) 

Pr{N(t) = n−1} = Sn

λ 
(λt)n−1 exp(−λt)

= 
(n − 1)! 

(λt)n exp(
pN(t)(n) =

−λt) 
Poisson 

n! 
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Def: The independent increment property for a 

counting process is that for all 0 < t1 < t2 < · · · tk,
the rv’s N(t1), [Ñ(t1, t2)], . . . , [Ñ(tn )]−1, tn  are indepen­

dent.


Thm: PP’s have both the stationary and indepen­


dent increment properties.


PP’s can be defined by the stationary and indepen­


dent increment properties plus either the Poisson


PMF for N(t) or


Pr
�
Ñ(t, t+δ) = 1

� 
= λδ + o(δ) 

Pr
�
Ñ(t, t+δ) > 1

� 
= o(δ). 
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Conditional arrivals and order statistics 

(n) n! 
f (�s  n) = for 0 < s1 < 
S�(n)|N(t) |

tn · · · sn < t 

t  τ n 
Pr{S1 > τ | N(t)=n} = 

� −
τ

 

�
for 0 <  

t
≤ t 

t  τ n 
Pr{Sn < t − τ | N(t)=n} = 

� − �
for 0 < τ 

t 
≤ t 

The joint distribution of S1, . . . , Sn given N(t) = n is 

the same as the joint distribution of n uniform rv’s 

that have been ordered. 
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Combining and splitting 

If N1(t), N2(t), . . . , Nk(t) are independent PP’s of rates 

λ1, . . . , λk,then N(t) = i Ni(t) is a Poisson process of 

rate 
�

j λj. 

�

Two views: 1) Look at arrival epochs, as generated, 

from each process, then combine all arrivals into 

one Poisson process. 

(2) Look at combined sequence of arrival epochs, 

then allocate each arrival to a sub-process by a se­

quence of IID rv’s with PMF λi/ 
�

j λj. 

This is the workhorse of Poisson type queueing 

problems. 
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Finite-state Markov chains 

An integer-time stochastic process {Xn; n ≥ 0} is a 
Markov chain if for all n, i, j, k, . . . , 

Pr{Xn = j | Xn−1=i, Xn−2=k . . . X0=m} = Pij, 

where Pij depends only on i, j and pX (m) is arbitrary. 
0

A Markov chain is finite-state if the sample space 
for each Xi is a finite set, S. The sample space S
usually taken to be the integers 1, 2, . . . , M. 

A Markov chain is completely described by {Pij; 1 ≤
i, j ≤ M} plus the initial probabilities pX (i). 

0

The set of transition probabilities {Pij; 1 ≤ i, j ≤
M}, is usually viewed as the Markov chain with pX0 
viewed as a parameter. 
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A finite-state Markov chain can be described as a 

directed graph or as a matrix. 

✎☞ P ✎☞ ✎☞✌   
P11 P12 · · · P16 

P21 P22  P26 [P ] = 




 .. . .. . .

· ·
.
·

.. .. .. .. .. 



P61 P62 P66




· · ·

a) Graphical b) Matrix 

An edge (i, j) is put in the graph only if Pij > 0, 
making it easy to understand connectivity. 

The matrix is useful for algebraic and asymptotic 

issues. 
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Classification of states 

An (n-step) walk is an ordered string of nodes (states), 
say (i0, i1, . . . in), n ≥ 1, with a directed arc from im−1 
to im for each m, 1 ≤ m ≤ n. 

A path is a walk with no repeated nodes. 

A cycle is a walk in which the last node is the same 
as the first and no other node is repeated. 

      Walk: (4, 4, 1, 2, 3, 2)

Walk: (4, 1, 2, 3)

Path: (4, 1, 2, 3)


Path: (6, 3, 2) 

✍✌ ✍✌ Cycle: (2, 3, 2)✌ Cycle: (5, 5) 

A node j is accessible from i, (i
       n   

→ j) if there is a
walk from i to j, i.e., if P > 0 for some n > 0. ij

15 

If (i→ j) and (j → k) then (i→ k).

Two states i, j communicate (denoted i ↔ j)) if
(i→ j) and (j → i).

A class C of states is a non-empty set such that
(i ↔ j) for each i, j ∈ C but i �↔ j) for each i ∈ C, j ∈/ C. 

S is partitioned�  into classes. The class C containing 
i is {i} {j : (i↔ j)}.

For finite-state chains, a state i is transient if there 
is a j ∈ S such that i → j but j �→ i. If i is not 
transient, it is recurrent. 

All states in a class are transient or all are recurrent. 

A finite-state Markov chain contains at least one 
recurrent class. 
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✒� ❅ 
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✖✕4 1
  m
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❅ ✔ � 

 �
❅✗  ✗❄�✠ 

✖✕
✔ th

✖✕3
 ✛ ✖✕2

  th

A substep for this theorem is showing that for an 
ergodic M state Markov chain, Pn > 0 for all i, j and ij
all n ≥ (M − 1)2 + 1. 

The reason why n must be so large to ensure that 
 Pn > 0 is indicated by the following chain where the ij

smallest cycle has length M − 1. 

✗✔ ✗✔
arting in state 2, the state 

  the next 4 steps is deter­

inistic. For the next 4 steps, 

ere are two possible choices 

en 3, etc. 

A second substep is the special case of the theorem 
where Pij > 0 for all i, j. 
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The period, d(i), of state i is gcd
  

{n : Pn > 0ii }, i.e., 
returns to i can occur only at multiples of some 
largest d(i). 

All states in the same class have the same period. 

A recurrent class with period d > 1 can be par­
titioned into subclasses S1, S2, . . . , d. Transitions 
from each class go  

S
only to states in the next class 

(viewing S1 as the next subclass to Sd). 

An ergodic class is a recurrent aperiodic class. A 
Markov chain with only one class is ergodic if that 
class is ergodic. 

Thm: For an ergodic finite-state Markov chain, 
lim n 

n P = π , i.e., the limit exists for all i, j and is in­ij j
dependent�  of i. {πi; 1 ≤ M} satisfies 

�
i πiPij = πj > 0 

with i πi = 1. 
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Lemma 2: Let [P ] > 0 be the transition matrix of 

a finite-state Markov chain and let α = mini,j Pij. 

Then for all states j and all n ≥ 1: 
  

max n+1 n+1 n nP − min P ≤ 
�
max P  − min P  

�
(1 − 2α). 

�
ij ij �j �ji i � � � 

max nP  − min nP  ≤ (1 − 2α)n
�j . �j� � 
lim max nP  = lim min n

�j P�j > 0. 
n→∞  � n→∞ � 

This shows that limn Pn approaches a limit inde­�j 
pendent of �, and approaches it exponentially for 

[P ] > 0. The theorem (for ergodic [P ]) follows by 

looking at lim nh for  = (M − 1)2 
n P h + 1.�j 
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An ergodic unichain is a Markov chain with one er­

godic recurrent class plus, perhaps, a set of tran­

sient states. The theorem for ergodic chains ex­

tends to unichains: 

Thm: For an ergodic finite-state unichain, lim  
n Pn = ij

πj, i.e., the limit exists for all i, j and is independent 

of i. {πi; 1 ≤ M} satisfies i πiPij = πj with i πi = 1. 
Also πi > 0 for i recurrent

�

 and πi = 0 otherwise.

�

 

This can be restated in matrix form as limn[Pn] = �eπππ

where �e = (1, 1, . . . , 1)T and πππ satisfies πππ[P ] = πππ and 

πππ�e = 1. 
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We get more specific results by looking at the eigen­
values and eigenvectors of an arbitrary stochastic 
matrix (matrix of a Markov chain). 

λ is an eigenvalue of [P ] iff [P − λI] is singular, iff 
det[P − λI] = 0, iff [P ]ννν = λννν for some ννν = 0, and iff 
πππ[P ] = λπππ for some πππ = 0.

�e is always a right eigenvector of [P ] with eigenvalue 
1, so there is always a left eigenvector πππ. 

det[P −λI] is an Mth degree polynomial in λ. It has M 
roots, not necessarily distinct. The multiplicity of 
an eigenvalue is the number of roots of that value. 

The multiplicity of λ = 1 is equal to the number of 
recurrent classes. 

21 

�
�

For the special case where all M eigenvalues are 
distinct, the right eigenvectors are linearly indepen­
dent and can be represented as the columns of an 
invertible matrix [U]. Thus 

[P ][U] = [U][Λ]; [P ] = [U][Λ][U−1] 

The matrix [U−1] turns out to have rows equal to 
the left eigenvectors. 

This can be further broken up by expanding [Λ] as 
a sum of eigenvalues, getting 

�M  
[P ] = (i) (i) λi �ν �π

i=1 

M  
[ nP ] = [U][Λn][U−1] =	

� n (i) (i) λi �ν �π
i=1 
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Renewal processes 

Thm: For a renewal process (RP) with mean inter-
renewal interval X > 0, 

N(t) 1 
lim = W.P.1. 

t→∞ t X 

This also holds if X = ∞. 

In both cases, limt→∞ N(t) = ∞ with probability 1. 

There is also the elementary renewal theorem, which 
says that 

�
N(t)

lim E 
t→∞ t

� 
1 

= 
X 
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Facts: All eigenvalues λ satisfy |λ| ≤ 1. 

For each recurrent class C, there is one λ = 1 with 
a left eigenvector equal to steady state on that re­
current class and zero elsewhere. The right eigen­
vector ννν satisfies limn Pr{Xn ∈ C | X0 = i} = νi. 

For each recurrent periodic class of period d, there 
are d eigenvalues equi-spaced on the unit circle. 
There are no other eigenvalues with |λ| = 1. 

If the eigenvectors span RM, then Pn converges to ij
πj as λn for a unichain where |λ2| is   the is the second 2
largest magnitude eigenvalue. 

If the eigenvectors do not span RM , then [P n] = 
[ 1U][J][U− ] where [J] is a Jordan form. 
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N(t) 

X2 
X1 

✲✛ 

S1 S2 S3 S4 S5 S6 

X5❅ 
❅ 

❅ 
❅ 

X2 ❅Y (t)
❅ X4 ❅ 

❅ ❅ ❅ 
❅ ❅ ❅ XX 6

1 ❅
❅ ❅ ❅ ❅ ❅❅❅ ❅ X3 ❅ ❅❅ ❅ ❅❅ ❅❅ ❅ ❅❅ ❅ ❅ t ❅ ❅ 

❅ ❅ 

S1 S2 S3 S4 S5 S6 

Residual life 

The integral of Y (t) over t is a sum of terms 2Xn/2. 
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The time average value of Y (t) is 
 

t E 2
Y (τ) dτ X

lim 

�
τ =0 = 

� �

W.P.1 
t→∞ t 2E [X] 

The time average duration is 

 

�  
t E 2X

lim τ =0 X(τ) dτ 
= W.P.1 

t→∞ t E

�

 [X]

�

 

For PP, this is twice E [X]. Big intervals contribute 

in two ways to duration. 
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Residual life and duration are examples of renewal 

reward functions. 

In general R(Z(t), X(t)) specifies reward as function 

of location in the local renewal interval. 

Thus reward over a renewal interval is 
  Sn Xn 

Rn = 
�

R(τ −Sn−1, Xn) dτ = 
�

R(z, Xn) dz 
Sn z=0 −1 

1 � t E [Rn]
lim R(τ) dτ = W.P.1 

t→∞ t τ =0 X 
This also works for ensemble averages. 
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Def: A stopping trial (or stopping time) J for a 
sequence {Xn; n ≥ 1} of rv’s is a positive integer-
valued rv such that for each n ≥ 1, the indicator rv 
I{J=n} is a function of {X1, X2, . . . , Xn}. 

A possibly defective stopping trial is the same ex­
cept that J might be a defective rv. For many ap­
plications of stopping trials, it is not initially obvious 
whether J is defective. 

Theorem (Wald’s equality) Let {Xn; n ≥ 1} be a se­
quence of IID rv’s, each of mean X. If J is a stop­
ping trial for {Xn; n ≥ 1} and if E [J] < ∞, then the 
sum SJ = X1 + X2 + · · · + XJ at the stopping trial J
satisfies 

E [SJ ] = XE [J] . 
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Wald: Let {Xn; n ≥ 1} be IID rv’s, each of mean X. 

If J is a stopping time for {Xn; n ≥ 1}, E [J] < ∞, and 

SJ = X1 + X2 + · · · + XJ , then

E [SJ ] = XE [J] 

In many applications, where Xn and Sn are nonneg­

ative rv’s , the restriction E [J] < ∞ is not necessary. 

For cases where X is positive or negative, it is nec­

essary as shown by ‘stop when you’re ahead.’ 
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Little’s theorem 

This is little more than an accounting trick. Con­
sider an queueing system with arrivals and depar­
tures where renewals occur on arrivals to an empty 
system. 

Consider L(t) = A(t)−D(t) as 
�

a renewal reward func­
 

tion. Then Ln = Wi also. 

A(τ) 

D(τ) 

W1 ✲

W2 

✛ 

✲

W3 

✛ 

✲

♣♣♣ ♣♣♣♣♣ ♣♣♣ ♣♣♣ ♣♣♣ ♣ ♣♣♣ ♣♣♣

✛ 

0 S1 t S2 
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Let L be the time average number in system, 

1 � t 
L = lim L(τ) dτ 

t t→∞ 0 

1 
λ = lim A(t) 

t→∞ t 

A�( )1 t  
W = lim Wi 

t→∞ A(t) i=1 
A(t)t 1  

= lim lim Wi 
t→∞ A(t) t→∞ t i

�

=1 

= L/λ 
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