
Random walks 

Def: Let {Xi; i ≥ 1} be a sequence of IID rv’s, and let 

Sn = X1+X2+· · ·+Xn for n ≥ 1. The integer-time stochas­

tic process {Sn; n ≥ 1} is called a random walk, or, specif­

ically, the random walk based on {Xi; i ≥ 1}. 

Our focus will be on threshold-crossing problems. For 

example, if X is binary with pX(1) = 1, pX(−1) = q = 1 − p, 

then 

 �

�
 ∞

 k 

p
Pr  {Sn ≥ k} =


�

 if p ≤ 1/2. 
  1 p 
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Detection, decisions, & Hypothesis testing 

The model here contains a discrete, usually binary, rv H 

called the hypothesis rv. The sample values of H, say 

0 and 1, are called the alternative hypotheses and have 

marginal probabilities, called a priori probabilities p0 = 

Pr{H = 0} and p1 = Pr{H = 1}. 

Among arbitrarily many other rv’s, there is a sequence 

Y�
(m) = (Y1, Y2, . . . , Ym) of rv’s called the observation. We 

usually assume that Y1, Y2, . . . , are IID conditional on H = 

0 and IID conditional on H = 1. Thus, if the Yn are 

continuous, 

m  
f
Y� (m) (�y  �) = f (yn �|    ). 

H
|

�
Y |H

n=1 
|
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Assume that, on the basis of observing a sample value 

�y of Y� ,
 we must make a decision about H, i.e., choose 

H = 0 or H = 1, i.e., detect whether or not H is 1.


Decisions in probability theory, as in real life, are not 

necessarily correct, so we need a criterion for making a 

choice. 

We might maximize the probability of choosing correctly, 

for example, or, given a cost for the wrong choice, might 

minimize the expected cost. 

Note that the probability experiment here includes not 

only the experiment of gathering data (i.e., measuring 

the sample value �y of Y� ) but also the sample value of 

the hypothesis. 
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From Bayes’, recognizing that f(�y) = p0f(�y|0) + p1f(�y|1) 

p�f� (�y  �) 
Y H

Pr  
|

{H=� | �y} = 
|

. 
p0f� (�y | 0) + p

Y | 1f
H Y�

(�y  |H | 1)

Comparing Pr{H=0 | �y} and Pr{H=1 | �y}, 

Pr{ =0 | } p0f� (�y
H �y Y

 
|H

=
| 0) 

. 
Pr{H=1 | �y} p1f� (�y|H | 1)

Y 

The probability that H = � is the correct hypothesis, given  
the observation, is Pr H=� | Y� . Thus we maximize the 

a posteriori probability

�

 of choosing

�

 correctly by choosing  
the maximum over � of Pr

�
H=� | Y�

�
. 

This is called the MAP rule (maximum a posteriori prob­

ability). It requires knowing p0 and p1. 
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The MAP rule (and other decision rules) are clearer if 

we define the likelihood ratio, 

f
Y�

(�y 
Λ(�y) = 

|H | 0) 
. 

f� (�y  
Y |H | 1) 

The MAP rule is then 
 
> p /p ; select ĥ=0 

Λ(�

�
1 0

y) ≤ p1/p0 ; select ĥ=1. 

Many decision rules, including the most common and 

the most sensible, are rules that compare Λ(�y) to a fixed 

threshold, say η, independent of �y. Such decision rules 

vary only in the way that η is chosen. 

Example: For maximum likelihood, the threshold is 1 

(this is MAP for p0 = p1, but it is also used in other 

ways). 
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Back to random walks: Note that the logarithm of the 

threshold ratio is given by 

�m f 0)
ln Λ( m) Y H(y( n

�y ) = Λ(yn); Λ(y 
 

n) = ln 


| |

fY 



|H(yn|1)n=1 

Note that Λ(yn) is a real-valued function



 of yn, and



 is the 

same function for each n. Thus, since Y1, Y2, . . . , are IID 

rv’s conditional on H = 0 (or H = 1), Λ(Y1), Λ(Y2), are 

also IID conditional on H = 0 (or H = 1). 

It follows that ln Λ( (
�y

m)), conditional on H = 0 ( or H = 1) 

is a sum of m IID rv’s and {ln Λ( (
�y

m)); m ≥ 1} is a random 

walk conditional on H = 0 (or H = 1). The two random 

walks contain the same sequence of sample values but 

different probability measures. 

Later we look at sequential detection, where observa­

tions are made until a treshold is passed. 
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Threshold tests and the error curve 

A general hypothesis testing rule (a test) consists of 

mapping each sample sequence �y into either 0 or 1. Thus 

a test can be viewed as the set A of sample sequences 

mapped into hypothesis 1. The error probability, given 

H = 0 or H = 1, using test A, is given by 

 
q0(A) = Pr{Y ∈ A | H = 0} ; c

q1(A) = Pr{Y ∈ A | H = 1} 

With a priori probabilities p0, p1 and η = p1/p0, 

Pr{e(A)} = p0q0(A) + p1q1(A) = p0[q0(A) + ηq1(A)] 

For the threshold test based on η, 

Pr{e(η)} = p0q0(η) + p1q1(η) = p0[q0(η) + ηq1(η)] 

q0(η) + ηq1(η) ≤ q0(A) + ηq1(A); by MAP 

8 



1 
q0(A) + ηq1(A) ❜❜❜❜❜

) ❜
q0(η) + ηq1(η ❜ ❜

❜ ❜ � (q1(A), q0(A))
❜❜❜❜❜ qi(A) = Pr{e | H=i} for test A 

❜❜❜❜❜
q0(η) ❜�

❜❜❜slope −η
❜❜ 

q1(η) 1 

q0(η) + ηq1(η) ≤ q0(A) + ηq1(A); by MAP 

Note that the point q0(A), q1(A) does not depend on p0; 

the a priori probabilities were simply used to prove the 

above inequality. 

For every A and every η, (q0(A), q1(A)) lies NorthEast of 

the line of slope −η through (q0(η), q1(η)). Thus (q0(A), q1(A)) 

is NE of the upper envelope of these straight lines. 
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1 

q0(η) + ηq1(η) ❜❜❜❜❜❜❜❜❜❜❜❜
q0(η) ❜❜❜❜❜❜ 

u(α) ✈ (q1(A), q0(A)) 

❦◗ ◗
◗ increasing η 

slope −η 

α q1(η) 1 

If the vertical axis of the error curve is inverted, it is 

called a receiver operating curve (ROC) which is a staple 

of radar system design. 

The Neyman-Pearson test is a test that chooses A to 

minimize q1(A) for a given constraint on q0(A). Typically 

this is a threshold test, but sometimes, especially if Y is 

discrete, it is a randomized threshold test. 
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Thresholds for random walks and Chernoff bounds 

The Chernoff bound�  sa�ys that for any real b and any r  
such that g (r) = E e

rZ
Z exists, 

Pr{Z ≥ b} ≤ gZ(r) exp(−rb); for b > Z, r > 0 

Pr{Z ≤ b} ≤ gZ(r) exp(−rb); for b < Z, r < 0 

This is most useful when� applied�  to a sum, Sn = X1+ Xn  · · · 
of IID rv’s. If gX(r) = E e

rX exists, then 

 
 n  

E 
�

rSn

�
 




�

r
e = E e Xi 



 = n
g (
X

r) 
i=1 



Pr{ ≥ } ≤ n
Sn na g (r) exp(−rna); for 

X
a > X, r > 0 

Pr{ n
Sn ≤ na} ≤ g (r) exp(−rna); for 

X
a < X, r < 0 
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0 r ro r
∗ 

❅

❅


❅

❅


❅

❅ slope = γ� (ro) = 

X a

slope X γX (ro) 

µX (a) = γX (ro)  roa Pr Sn  na   exp(nµX (a)) 

This is easier to interpret and work with if expressed in 

terms of the semi-invariant MGF, γX(r) = ln gX(r). Then 

g
n ( ( ) 

r) = enγX r and 
X

Pr{Sn ≥ na} ≤ exp(n[γX(r) − ra]); for a > X, r > 0 

Pr{Sn ≤ na} ≤ exp(n[γX(r) − ra]); for a < X, r < 0 

− { ≥ } ≤

The Chernoff bound, optimized over r, is essentially ex­

ponentially tight; i.e., Pr{Sn ≥ na} ≥ exp(n(µX(a) − �)) for 

large enough n. 
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In looking at threshold problems, we want to find the 

probability that Pr{Sn ≥ α} for any n. Thus we want a 

bound that focuses on variable n for a fixed α, i.e., on 

when the threshold is crossed if it is crossed. 

We want a bound of the form Pr{Sn ≥ α} ≤ exp αf(n) 

Start with the bound Pr{Sn ≥ na} ≤ exp(n[γX(r0) − r0a]), 
with α = an and r0 such that γ� (r

X 0) = α/n. Substituting

α/γ
� (r0) for n,
X

Pr{Sn ≥ α} ≤ exp 

�

α

�  
γX(r0) 

γ
� (r0) 

− r0 
X

��

13 

X

0 r ro r
∗ ro − γ(ro)/γ

�(r0) 
❅ 

❅ 
❅ 

❅ 
❅ 

❅ slope = γ�(ro) = α/n 
slope = X γ(ro) 

 

�  
 

S

�
γX(r0)Pr{ n ≥ α} ≤ exp α − r0
γ
�  (r0) 

��

When n is very large, the slope γ
� (r0) is close to 0 and 
X

the horizontal intercept (the negative exponent) is very 

large. As  decreases, the intercept decreases to ∗ 
n r and 

then increases again. 

Thus Pr{�
n Sn ≥ α} ≈ exp(−αr

∗), where the nature of the 

approximation remains to be explained. 
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0 r r r
∗ 

o ro − γ(ro)/γ
�(r0)

❅

❅


❅

❅


❅

❅ slope = γ�(ro) = α/n

slope = X γ(ro) 

γX (ro)  roa −

Example: pX(1) = p, pX(−1) = 1−p; p < 1/2. Then gX(r) = 

pe
r + (1−p)  

e
−r; γX(r) = ln[pe

r + (1−p)e−r] 

 
Since γX(r∗

 
) = 0, we have pe

r
∗
+ (1−p)e−r

∗
= 1. Letting 

z = er
∗
, this is pz +(1

 
−p)/z = 1 so z is either 1 or (1 − p)/p. 

Thus r∗ = ln(1−p)/p and 

Pr 

�
� 

Sn ≥ α

� 
1 p

−α 

 ≈ exp( α
−

− r
∗) = 

n

�

p 

�

which is exact for α integer. The bound for individual n 

is the exponent in the Gaussian approximation. 
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