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Random walks

Def: Let {X;; 7 > 1} be a sequence of IID rv’'s, and let
Sp = X1+Xo+---+X,, for n > 1. The integer-time stochas-
tic process {S,; n > 1} is called a random walk, or, specif-
ically, the random walk based on {X;; i > 1}.

Our focus will be on threshold-crossing problems. For
example, if X is binary with px (1) =1, px(-1) =¢=1-p,
then

1-p
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Detection, decisions, & Hypothesis testing

The model here contains a discrete, usually binary, rv H
called the hypothesis rv. The sample values of H, say
0O and 1, are called the alternative hypotheses and have
marginal probabilities, called a priori probabilities pg =
Pr{H =0} and p; = Pr{H = 1}.

Among arbitrarily many other rv’s, there is a sequence
Y(m) = (Y1,Ya,...,Ym) of rv's called the observation. We
usually assume that Y7,Y>,..., are IID conditional on H =
0 and IID conditional on H = 1. Thus, if the Y,, are
continuous,

m
n=—

Assume that, on the basis of observing a sample value
y of }7, we must make a decision about H, i.e., choose
H=0o0or H=1, i.e., detect whether or not H is 1.

Decisions in probability theory, as in real life, are not
necessarily correct, so we need a criterion for making a
choice.

We might maximize the probability of choosing correctly,
for example, or, given a cost for the wrong choice, might
minimize the expected cost.

Note that the probability experiment here includes not
only the experiment of gathering data (i.e., measuring
the sample value 3y of }7) but also the sample value of
the hypothesis.



From Bayes’, recognizing that (7)) = pof(%]0) + p1f(7]1)
pefy (T 1 0)

P07 g @10) + pify @1 1)

Comparing Pr{H=0| y} and Pr{H=1 | 4},

Pr{H=¢( |y} =

Pr{H=0 | 7} _ P0f37|H(g| 0)
PHH=119} ~ pify 11

The probability that H = 7 is the correct hypothesis, given
the observation, is Pr{H=(|Y}. Thus we maximize the
a posteriori probability of choosing correctly by choosing
the maximum over ¢ of Pr{HzE | }7}.

This is called the MAP rule (maximum a posteriori prob-
ability). It requires knowing pgp and p;.

The MAP rule (and other decision rules) are clearer if
we define the likelihood ratio,

. fﬂH(?ﬂ 0)
ANY) = =~
fﬁH(y | 1)
The MAP rule is then
. >p1/po0 select h=0
A& { <pi/po select h=1.

Many decision rules, including the most common and
the most sensible, are rules that compare A(y) to a fixed
threshold, say 7, independent of y. Such decision rules
vary only in the way that 7 is chosen.

Example: For maximum likelihood, the threshold is 1
(this is MAP for po = p;, but it is also used in other
ways).



Back to random walks: Note that the logarithm of the
threshold ratio is given by

AL fy i (ynl0)
INAG™) = 3 A@n)i  Alyn) = In [ T2
n=1 Sy 1a(yn|1)
Note that A(y,) is a real-valued function of y,, and is the

same function for each n. Thus, since Y7,Y>,..., are IID
rv’s conditional on H = 0 (or H = 1), A(Y7),A(Y>), are
also IID conditional on H =0 (or H = 1).

It follows that In A(7(™)), conditionalon H =0 (or H = 1)
is a sum of m IID rv's and {InA(7#")); m > 1} is a random
walk conditional on H =0 (or H = 1). The two random
walks contain the same sequence of sample values but
different probability measures.

Later we look at sequential detection, where observa-
tions are made until a treshold is passed.

Threshold tests and the error curve

A general hypothesis testing rule (a test) consists of
mapping each sample sequence 3 into either O or 1. Thus
a test can be viewed as the set A of sample sequences
mapped into hypothesis 1. The error probability, given
H =0 or H=1, using test A, is given by

w0(A) =Pr{Y e A|H=0}; q(A)=Pr{Y eA°|H=1}
With a priori probabilities pg,p; and n = p1/po,

Pr{e(A)} = poqo(A) 4+ p191(A) = polgo(A) 4+ ngq1(A)]
For the threshold test based on 7,

Pr{e(n)} = pogo(n) + r1g1(m) = polao(n) + ng1(n)]

q0(n) +n91(n) < qo(A) +nq1(A); by MAP



qo(n) +nq1(n) < qo(A) +nq1(A); by MAP

Note that the point ¢g(A),q1(A) does not depend on pg;
the a priori probabilities were simply used to prove the
above inequality.

1

q0(A) + nq1(A)
qo(n) + ng1(n) \ (q1(A), q0(A))

qi(A) = Pr{e | H=i} for test A

QO(n) ******* slope —7

|
q1(n) 1
For every A and every 7, (qp(A),q1(A)) lies NorthEast of
the line of slope —n through (qq(n),q1(n)). Thus (¢o(A),q1(A))
is NE of the upper envelope of these straight lines.

u(a)

qo(n) + nq1(n) o (q1(A),q0(4))

RN increasing 7

Q@) - - - - -~ slope —n

|
a q1(n) 1

If the vertical axis of the error curve is inverted, it is
called a receiver operating curve (ROC) which is a staple
of radar system design.

The Neyman-Pearson test is a test that chooses A to
minimize ¢1(A) for a given constraint on ¢g(A). Typically
this is a threshold test, but sometimes, especially if Y is
discrete, it is a randomized threshold test.
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Thresholds for random walks and Chernoff bounds

The Chernoff bound says that for any real b and any r
such that g,(r) =E [eTZ} exists,

gz (r) exp(—rb); forb>Z7, r>0

g7 (r) exp(—rb); forb< Z, r<O0

Pr{Z > b}

Pr{Z < b}
This is most useful when applied to a sum, S, = X1+ -- Xn
of IID rv’s. If gx(r) =E [eTX} exists, then

<
<

e[ =g | 1T | =10

=1
Pr{Sn > na} < g¢g%(r)exp(—rna); fora> X, r>0
Pr{Sn <na} < g¢g%(r)exp(—rna); fora< X, r<0
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This is easier to interpret and work with if expressed in
terms of the semi-invariant MGF, ~x(r) =Ingx(r). Then
gy (r) = eMx (") and

Pr{Sn > na} < exp(n[yx(r)—ra]); fora> X, r>0
Pr{Sn, <na} < exp(n[yx(r)—ra]); fora< X, r<0
0 r To 5

|
slope = (1) =a

siope X ()
x(a) = vx(r,) — roa Pr{S, > na} < exp(nux(a))

The Chernoff bound, optimized over r, is essentially ex-
ponentially tight; i.e., Pr{S, > na} > exp(n(ux(a) —€)) for
large enough n.
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In looking at threshold problems, we want to find the
probability that Pr{S, > a} for any n. Thus we want a
bound that focuses on variable n for a fixed «, i.e., on
when the threshold is crossed if it is crossed.

We want a bound of the form Pr{S, > a} < expaf(n)

Start with the bound Pr{S, > na} < exp(n[yx(rg) — roal),
with o = an and rg such that ~%(rg) = a/n. Substituting

a/vy (rg) for n,

Pr{Sn > a} <exp (a VX(TO) TOD

Yo (ro)
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Pr{Sn, > a} <exp <a Vf((m) — r0]>
7x(TO)

*

0 7 To T o — Y(1r0) /7' (0)
\

slope = +/(r,) = a/n

>

slope = ’V(To)

When n is very large, the slope +.(rg) is close to 0 and
the horizontal intercept (the negative exponent) is very
large. As n decreases, the intercept decreases to r* and
then increases again.

Thus Pr{l,, Sn > a} =~ exp(—ar*), where the nature of the
approximation remains to be explained.
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0 r To T o — (7o) /7' (r0)

— slope = +/(r,) = a/n
slope = X ’y(ro)

Fx (o) — Tot

Example: px(1) =p, px(~1) =1-p; p<1/2. Then gx(r)
pe" + (1-p)e™";  x(r) =In[pe” + (1—-p)e™"]

Since vx(r*) = 0, we have pe” + (1-p)e™™ = 1. Letting
z=¢", thisis pz+ (1—p)/z =1 so z is either 1 or (1—p)/p.
Thus r* =In(1-p)/p and

Pr{U Sn > a} ~ exp(—ar®) = <ﬂ> -

P
which is exact for o integer. The bound for individual n
is the exponent in the Gaussian approximation.
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