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1 Review

Definition 1 (Martingale). {Mt} is a martingale with respect to F0 ⊂ F1 ⊂
. . .  ⊂ F if it satisfies: 

1. Mt ∈ Ft, t ≥ 0

2. E|Mt| < ∞, t ≥ 0

3. E[Mt|Ft−1] = Mt−1, t ≥ 1

In other words, {Mt} is a martingale w.r.t. {Xt} if:

1. Mt = f(X0, . . . ,Xt), t ≥ 0

2. E|Mt| < ∞, t ≥ 0

3. E[Mt|X0, . . . ,Xt−1] = Mt−1, t ≥ 1.

For convenience, we denote it by 

Es = E[·|Fs] = E[·|X0, . . . ,Xs],
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and the third condition can be written as: Et−1Mt = Mt−1 for any t ≥ 1.

When we say {Mt} is a martingale without specifying the filtration, we mean

that it is a martingale with respect to its natural filtration, i.e.  Ft = σ(M0, . . . ,Mt).
We consider it as a special case of the definition. 

Now if {Mt} is a martingale with respect to the filtration Ft = σ(X0, . . . ,Xt),
it is also a martingale with respect to its filtration σ(M0, . . . ,Mt). In  fact,  by

the tower property, we have: 

E[Mt|M0, . . . ,Mt−1] = E[E[Mt|Ft]|M0, . . . ,Mt−1] = E[Mt−1|M0, . . . ,Mt−1] = Mt−1.

Properties of a martingale {Mt}

Let At be the gambler’s ruin Markov chain starting from k. Now  let’s  consider

the simple random walk St starting from St = k, and  St = St−1 + Xt with 
P(Xt = ±1) = 1 . Let,2 

τ = inf{t : St = 0 or St = n}.

Notice that At = St∧τ . Since  St is a martingale, it follows that its stopped 
martingale At is a martingale as well. This implies a good property of gambler’s 
ruin Markov chain, which is 

EAt = A0 = k. 

We will use the definitions and notations of St and At for several times in this 
lecture. 
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• EsMt =Mt∧s

• EMt = EM0,∀t ≥ 0

• If Mt is a martingale, and τ is a stopping time, then Yt = Mt∧τ is a

martingale.

• Side note: En also works like a martingale: EnEm = En∧m, EEn =
EnE = E. In fact, you can also define Eτ and even have EτMt = Mτ∧t.

But we won’t do it in this class.
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Theorem 1 (Optional Stopping Theorem). If {Mt} is a martingale and τ is

a stopping  time  such that  {Mt} is uniformly integrable and P(τ < ∞) = 1,

then 
EMτ = EM0. 

Proposition 1 (Uniformly integrable martingales). The following proposi-

tions about uniformly integrable martingales (u.i.M.) hold: 

1. Mt = E[Z|Ft] for any Z such that E|Z| < ∞ is always u.i.M.

2. If there exists G(t) such that G(t)/t → ∞ as t → ∞. If  sup E[G(Mt)] <t 
∞, then  Mt is u.i.M. 

3. If |Mt −Mt−1| ≤ c <  ∞ and Eτ < ∞, then  Yt = Mt∧τ is u.i.M.

{Sn} is not uniformly integrable. Indeed, the magnitude of |Sn| is approx-

imately O( 
√ 
n). For  any  b, one  can  always  find  some  N ≈ b2 such that

E[|SN |1{|SN | ≥ b}] ≥ c, so  sup E[|Sn|1{|Sn| ≥ b}] ̸→ 0 as b → ∞. Hence,n 
Sn is not uniformly integrable. 

2 Some  applications  of  O.S.T.

2.1 Gambler’s Ruin 

For the gambler’s ruin problem, we start with A0 = k, and  we  want  to  find

P[win] = P[A∞ = n]. 

Note that At = St∧τ is a u.i.M (since At is bounded), therefore 

nP[win] = EAτ = EA0 = k, 

as 
0, ”ruined” 

Aτ = . 
n, ”won” 

Therefore, P[win] =  k . n 

Now let Mt = S2 − t = (St−1 + Xt)2 − t = St 
2 
−1 + 2XtSt−1 + X2 − t =t t 

St 
2 
−1 − (t − 1) + 2XtSt−1 = Mt−1 + 2XtSt−1. Therefore, 

Et−1Mt = Mt−1. 
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Mt∧τ is uniformly integrable since the increment |Mt − Mt−1| = 2|XtSt−1| is 
bounded. 
Therefore, by OST, we have 

k 
· n 2 − Eτ = E[Mτ ] = M0 = k2 , 

n 

and thus, Eτ = k(n − k). 

2.2 Null recurrence of St 

We start with S0 = k. Let  τ1 = inf{t : St = 0}, and  Bt = St∧τ1 . One  can  think  
of Bt as a Markov chain with 0 the absorbing state. 
We know from recurrence of St that τ1 < ∞ a.s.. We also know that ESt = 
EBt = ES0 = k. 

If Bt were a u.i.M, then OST applies, we will have EBτ1 = k. However,  by  
definition, Bτ1 = 0 a.s., so EBτ1 = 0 ≠ k. By Proposition 2(3), the only thing 
that prevents Bt from being a u.i.M is Eτ = ∞. Therefore, St is null recurrent. 

2.3 Gambler’s Ruin in the asymmetric case 

For the asymmetric case, i.e. St = St−1 + Xt with P(Xt = 1)  =  p and 
P(Xt = −1) = 1 − p, one  can  use  the  following  two  martingales  to  compute  
P[win] and Eτ : 

1. Mt = St − (2p − 1)t 

2. Nt = eλSt−tψX (λ), where  ψX1 (λ) = lnMX1 (λ) 

From OST, we have 

ESτ − (2p − 1)Eτ = EMτ = M0 = k 

and 
λk e λnP[win] + P[ruined] = ENτ = N0 = e , 

with some λ(= ln 1− 
p
p ) such that ψX1 (λ) = 0. 

3 Martingale  Convergence  Theorem  

Think of Mt as the price of stock. At time t − 1, you  decide  to  move  your  
possession of stock to Ft shares, where Ft ∈ Ft−1 is determined by all the 
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observed information at time t − 1. Then  the  value  of  your  portfolio  at  time  t is

Proposition 2. If Mt is a martingale, then Vt is a martingale. In particular, 
EVt = EV0. 

The important consequence is that if you start with F0 shares priced at M0 

then no trading strategy (and no finite cash-out time) can yield an expectation 
different from what you had E[F0M0] in the beginning. Assuming the market 
price is a martingale with respect to the same filtration Ft that determines the

available information you have to execute the trading decisions. 

Definition 2. Starting S0 = 0, define  Tk = inf{t ≥ Sk−1 : Mt ≤ a},

Sk = inf{t ≥ Tk : Mt ≥ b}. Define Un(a, b) =# of  upcrossings  of  (a, b) in

0 ≤ t ≤ n, i.e.  
Un(a, b) = sup{k : Sk ≤ n}.

Lemma 1 (Upcrossing Lemma). 

E(Mn − a)− 
E[Un(a, b)] ≤ . 

b − a

Proof. Starting with F0 = 0 and do trading: buy 1 share when Mt ≤ a and sell

it when Mt ≥ b. Since  V0 = 0, we  have  

Vn ≥ (b − a)Un + (Mn − a) ∧ 0 = (b − a)Un − (Mn − a)−.

Since Vn is a martingale, it follows from Optional Stopping Theorem that 

E(Mn − a)− 
EUn ≤ . 

b − a
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△
=Vt = F0M0 + F1(M1 −M0) + . . . + Ft(Mt −Mt−1)

∫ t

0
F dM.



�Theorem 2. If Mn is a martingale such that µ sup E|Mn| < ∞, thenn 
there exists an integrable random variable M∞ such that 

a.s.
Mn → M∞ , and E[|M∞|] ≤ µ <  ∞ .

L1 If Mt is u.i.M, then Mt → M∞ and

Mt = E[M∞|Ft].

Remark: Note that if Mt is u.i.M. then µ <  ∞ automatically. Thus, the

second part of the theorem shows that every u.i.M. is in fact a Doob martingale. 

Proof. Proof of part 1: Fix  b > a, 

U(a, b) =  lim  Un(a, b). 
n→∞ 

By the upcrossing lemma, we  have

E(Mn − a)− E|Mn| + |a|
EUn(a, b) ≤ ≤ sup < ∞.

b − a n b − a

Therefore, by Monotone Convergence Theorem, we  have

E|Mn| + |a|
EU(a, b) =  lim  EUn(a, b) ≤ sup < ∞.

n→∞ n b − a

This imples that, 

P(U(a, b) =  ∞ for any b > a, a, b ∈ Q) = 0.

So with probability 1 the trajectory Mn intersects any arbitrary small interval 
only finitely many times. Thus there must exist a (possibly extended real-valued) 

a.s. 
random variable M∞ such that Mn → M∞.

To show that M∞ is in fact integrable (and hence real-valued) we use Fatou’s 
lemma: 

E[|M∞|] =  E[lim inf |Mn|] ≤ lim inf E[|Mn|] ≤ µ <  ∞ .
n→∞ n→∞ 

Proof of part 2: To show Mt = E[M∞|Ft], it  suffices  to  show  that  for  any

B ∈ Ft, we  have  
EM∞1B = EMt1B . 
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For any m ≥ t, we  have

EMm1B = E[Et[Mm1B ]] = E[1B Mt]. 

a.s. 
Since Mm1B → M∞1B and {Mm1B } is uniformly integrable, it follows that

L1 Mm1B → M∞1B . Therefore,

E[Mt1B ] =  lim  E[Mm1B ] = E[M∞1B ]. 
m→∞ 

Corollary 1. If Mn ≥ 0, Mn is a martingale, then it converges almost surely

to integrable M∞. 

Proof. Since for any n, 

E|Mn| = EMn = EM0,

it follows that 
supE|Mn| < ∞.
n 

In particular, Mn = X1 . . . Xn such that Xn ≥ 0,EXn = 1. Then,  Mn con-

verges almost surely. 

4 Further  topics

Martingale and stopping time theory is rich subject. The key omissions are: 

• A lot  of  results  about  martingales  are  also  available  for  submartingales

(i.e. when Et−1[Mt] ≥ Mt−1) and  supermartingales  (i.e.  when  Et−1[Mt] ≤
Mt−1). 

• Maximal inequalities for martingales/submartingales/supermartingales).

These establish results similar to Kolmogorov’s maximal inequalities (for

sums of independent r.v.s) but for general martingales. To get a flavor of

such results, if M0 = 0 then

1 
P[ max  Mt > b] = P[Un(0, b) ≥ 1] ≤ E[|Mn|] ,

0≤t≤n b 
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where in the last step we applied the upcrossing Lemma and Markov’s 
inequality. So in particular, in the setting of convergence theorem we 
see that life-time maximum of Mt is of the order of µ. Other  maximal

inequalities bound p-th norm of the maximum in terms of the p-th norm 
of Mn etc. 
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