
6.6220 HW7 Solutions ∗ 

7.1 KPVS 9.6: 3-Phase Bridge 
Power Factor 

3-Phase Bridge 

Because the three phases are symmetric, we only 
need to fnd the power factor of one phase to fnd 
the power factor of the 3-phase bridge. In particu-
lar, we’ll focus on fnding the power factor of source 
va with voltage and current waveforms shown in 
Fig. 1. 
To fnd the power factor, we need to fnd the 

average power and the rms voltage and current. 
√Z 5π/61 3 ⟨P ⟩ = Vs sin (ωt)Id d(ωt) = VsId

π ππ/6 

Vs
Va,rms = √ 

2r r 

Ia,rms =
2 
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2 
d3 3 

Power factor for the 3-phase bridge is then 

⟨P ⟩ 3 
PF3ϕ = = ≈ 0.955 

Va,rmsIa,rms π 

Single-Phase Bridge 

For a single-phase bridge, the circuit and wave-
forms are shown in Fig. 2. 
In this case, our average power and rms voltage 

and current are Z π1 2 ⟨P ⟩ = Vs sin (ωt)Id d(ωt) = VsId
π π0 

Vs
Vrms = √ 

2 
Irms = Id 

So, our power factor is 
√ 

⟨P ⟩ 2 2 
PF1ϕ = = ≈ 0.900 

VrmsIrms π 
∗ Khandoker N. Rafa Islam 2023 (adapted from Yang 

2022) 

The 3-phase bridge therefore has a greater power 
factor than the single-phase bridge. 

Figure 1: 3-Phase Bridge (reproduced KPVS Fig. 9.8a) 
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Figure 2: Single-Phase Bridge 

7.2 KPVS 9.2 (a), (b): 12-Pulse 
Rectifer 

We’re interested in analyzing diferent currents in 
a 12-pulse rectifer with transformer connections as 
shown in Fig. 3 

′7.2.A Line current ia 

Looking at the ∆/Y transformer block, from KCL, 
the line current ia is the diference of the two cur-′ 

rents going into the primary of the top and bottom 
transformers, or ia ′ = ia ′ p −ic ′ p as labeled in Fig. 3. 
So, to fnd ia ′ , we must frst fnd the secondary-side 
currents ia ′ s and ic ′ s and then transform them into 
their respective primary-side currents. 
To the right of our ∆/Y transformer (not shown 

here) is a 6-pulse rectifer. The secondary-side cur-
rents will thus have the form of a 6-pulse rectifer, 
with each phase shifted by 120◦ . In particular, ic ′ s 

will lag behind ia ′ s by 240◦ . We then refect the√ 
secondary-side currents across the 3 : 1 trans-
former, which scales the current magnitudes by a√ 
factor of 1/ 3, giving us the primary-side wave-
forms shown in Fig. 4. (Here, we started our wave-
forms at angle −π/6 to make subsequent analysis 
easier.) Taking the diference between ia p and ic p ′ ′ 

gives us the line current ia ′ , shown in Fig. 4. 

7.2.B Primary-side line current iA 

From KCL, the primary-side line current iA is the 
sum of the primary-side currents going into each 
transformer block, or iA = ia + ia ′ . We know 
what ia is from the previous part. For ia, we know ′ 

that the outputs of the Y/Y and ∆/Y transformer 
blocks are shifted by π/6 from each other. Now, 
we need to fgure out which direction to shift the 
waveforms. 
Looking at the top transformer in the ∆/Y 

transformer block, we can see that the secondary-
′side current ia s is driven by the primary-side 

voltage vab. In the Y/Y transformer block, the 
secondary-side current ias is driven by the primary-
side voltage va. As shown in lecture, we know 
that vab lags behind va by π/6. Therefore, ia ′ s 

should also lag behind ia by π/6, giving us the 
current waveform for ia shown in Fig. 4. To get 
our primary-side line current iA, we add the two 
primary-side currents for each transformer block, 
giving us the waveform in Fig. 4. 

7.3 KPVS 9.15: 3-Phase Bridge In-
verter 

The voltage vnr is the average of the three phase 
voltages and is plotted in Fig. 9.20(d) of the text. 
The phase-to-neutral quantities can be computed 
as van = var − vnr, vbn = vbr − vnr, and vcn = 
vcr − vnr. We add these quantities as shown in 
Table 2 (see last page). 

7.4 KPVS 9.18: 3-Phase Inverter 
PWM Modulation 

7.4.A Local-average line-to-line output voltages 

In this problem, our duty ratios are 

1 m m 
d1 = 1 − d4 = + sin (ωt) + sin (3ωt)

2 2 12 
1 m 2π m 

d3 = 1 − d6 = + sin (ωt − ) + sin (3ωt)
2 2 3 12 
1 m 2π m 

d5 = 1 − d2 = + sin (ωt + ) + sin (3ωt)
2 2 3 12 
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To fnd the local-average line-to-line voltages, we 
must frst fnd the local-average line-to-reference 
voltages. For now, let’s look at voltage var; the 
other two voltages have analogous analysis. When 
switch S1 is on and switch S4 is of, va is tied to 
Vdc so that var = Vdc/2. When switch S1 is of 
and switch S4 is on, va is tied to ground so that 
var = −Vdc/2. The local-average line-to-reference 
voltage var is thus 

Vdc −Vdc 
var = d1 + (1 − d1)

2 2 
1 m m Vdc 

= ( + sin (ωt) + sin (3ωt))
2 2 12 2 

1 m m −Vdc
+(1 − − sin (ωt) − sin (3ωt))

2 2 12 2 
m m 

= Vdc sin (ωt) + Vdc sin (3ωt)
2 12 

We can similarly fnd the other two local-average 
line-to-reference voltages. 

m 2π m 
vbr = Vdc sin (ωt − ) + Vdc sin (3ωt)

2 3 12 
m 2π m 

vcr = Vdc sin (ωt + ) + Vdc sin (3ωt)
2 3 12 

The local-average line-to-line voltages can be 
found by taking the diferences between the line-
to-reference voltages and then simplifying using the 
following two trig identities: 

1 1 
sin u − sin v = 2 sin ( (u − v)) cos ( (u + v))

2 2 
π 

cos (u − ) = sin u 
2 

Using these trig identities, we can fnd vab. 

vab = var − vbr 
m m 2π 

= Vdc sin (ωt) − Vdc sin (ωt − )
2 2 3� � � � �� 
m 1 2π 1 2π 

= Vdc 2 sin ( ) cos (2ωt − )
2 2 3 2 3 
m �√ π � 

= Vdc 3 cos (ωt − )
2 3√ 
3 π 

= m Vdc sin (ωt + )
2 6 

Similarly, we can fnd the other two local-average 
line-to-line voltages. 

√ 
3 π 

vbc = m Vdc sin (ωt − )
2 2√ 
3 5π 

vca = m Vdc sin (ωt + )
2 6 

7.4.B Duty ratio extremae 

To fnd the locations of extremae of d1, we want to 
take its frst derivative with respect to ωt and set 
it equal to zero. 

d(d1) d 1 m m 
= ( + sin (ωt) + sin (3ωt))

dωt dωt 2 2 12 
m m 

= cos (ωt) + cos (3ωt)
2 4 

Setting the above to zero and multiplying by 
4/m, we get that the local extremae occur when 

2 cos (ωt) + cos (3ωt) = 0 

7.4.C Distortion boundary 

We want to show that for m = √2 , d1 has a maxi-3 
mum of 1 at ωt = 60◦ and 120◦ and a minimum of 
zero at ωt = 240◦ and 300◦ . 
From part b, we know where the extremae of 

d1 are. Now, we just need to show whether the 
extremae at these specifc points are maxima or 
minima. To do this, we take the second derivative 

d(d1)
2 

of d1 with respect to ωt. If < 0, we have ad2 ωt 
d(d1)

2 

maximum. If > 0, we have a minimum. d2 ωt 

d(d1)
2 −m 3m 
= sin (ωt) − sin (3ωt)

d2ωt 2 4 

To get the value of d1 at each point, we plug ωt 
back into our equation for d1. A summary of the 
specifc points we’re interested in is in Table 1. 

3



Table 1: d1 extremae types and values 

Figure 3: Transformer connections for the 12-pulse rec-
tifer (reproduced KPVS Fig. 9.28) 

d(d1 )
2 

ωt extrema type d1d2ωt 
√ 
360◦ − maximum 14 

√ 
3120◦ − maximum 14 

√ 
3240◦ minimum 04 

√ 
3300◦ minimum 04 
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Figure 4: Primary-side ∆ line currents 
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1

2

3

4

5

6

7

6

Vector {a b c}
S0 = {000}
S = {100}
S = {110}
S = {010}
S = {011}
S = {001}
S = {101}
S = {111} 

Sw. on 
4, 6, 2 
1, 6, 2 
1, 3, 2 
4, 3, 2 
4, 3, 5 
4, 6, 5 
1, 6, 5 
1, 3, 5 

var 

−1/2 
+1/2 
+1/2 
−1/2 
−1/2 
−1/2 
+1/2 
+1/2 

vbr 

−1/2 
−1/2 
+1/2 
+1/2 
+1/2 
−1/2 
−1/2 
+1/2 

vcr 

−1/2 
−1/2 
−1/2 
−1/2 
+1/2 
+1/2 
+1/2 
+1/2 

vab 

0 
+1 
0 
−1 
−1 
0 
+1 
0 

vbc 

0 
0 
+1 
+1 
0 
−1 
−1 
0 

vca 

0 
−1 
−1 
0 
+1 
+1 
0 
0 

van 

0 
+2/3 
+1/3 
−1/3 
−2/3 
−1/3 
+1/3 
0 

vbn 

0 
−1/3 
+1/3 
+2/3 
+1/3 
−1/3 
−2/3 
0 

vcn 

0 
−1/3 
−2/3 
−1/3 
+1/3 
+2/3 
+1/3 
0 

vnr 

−1/2 
−1/6 
+1/6 
−1/6 
+1/6 
−1/6 
+1/6 
+1/2 

Table 2: Update of Table 9.1 in the text with line-neutral quantities added for problem 9.15 



MIT OpenCourseWare 
https://ocw.mit.edu 

6.622 Power Electronics 
Spring 2023 

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms 

7

https://ocw.mit.edu
https://ocw.mit.edu/terms

	cover.pdf
	Blank Page




