Diploid Genetics and Chromosomal Inheritance

A. Diploid Genetics

For each set of data below, determine the genotype of the parents in cross 1. Where it applies, indicate which phenotypes are dominant and which are recessive.

1. Mice I

a) cross 1: red-eyed mouse _____ X white-eyed mouse _____

gives F₁: all red-eyed

cross 2: red-eyed F_1 X red-eyed F_1

gives F₂: 36 red-eyed 13 white-eyed

b) cross 1: long-eared mouse _____ X short-eared mouse _____

gives F₁: 12 long-eared 10 short-eared

cross 2: long-eared F₁ X long-eared F₁

gives F₂: 36 long-eared 13 short-eared

2. Flowers

cross 1: blue-flowered plant _____ X white-flowered plant _____

gives F₁: all pale-blue-flowered

cross 2: pale-blue F_1 X pale-blue F_1

gives F₂: 27 blue 49 pale-blue 24 white

3. Blood Type

a) cross 1: person, type A blood ______ X person with type B ______ gives F₁: all type AB blood cross 2: type AB F₁ X type AB F₁ gives F₂: 2 type A 4 type AB 1 type B

b) cross 1: type A blood _____ X type B _____

gives F_1 : 2 type A blood 3 type AB blood 1 type B blood 2 type O blood

4. Mice II

B. Chromosomes and Recombination

1. What is the physical basis of the genetic inheritance?

- 2. Why is sexual reproduction a powerful source of variation?
- 3. Why was it evolutionarily advantageous to develop the ability to recombine chromosomes?

Think about the following question for next time (we will talk about it in Section 16): Recombination can occur anywhere along the length of the chromosome. However, we have been relying on the fact that genes are inherited as discreet units. How do we reconcile these two things? (Hint: think about what usually is the difference between two alleles of the same gene.)