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PROBLEM SET 2 

DUE DATE: Monday, September 24, 2012. Either hand it in at the lecture, or by 6:00 
pm in the 8.07 homework boxes. 

READING ASSIGNMENT: Chapter 2 of Griffiths: Electrostatics. 

GRADING OF THIS PROBLEM SET: The problem set is worth 85 points plus 
20 points extra credit. It is therefore time to clarify the operational definition of 
“extra credit”. We will keep track of the extra credit grades separately, and at the 
end of the course I will first assign provisional grades based solely on the regular 
coursework. I will consult with Prof. Chen and Ahmet Demir, and we will try to 
make sure that these grades are reasonable. Then I will add in the extra credit, 
allowing the grades to change upwards accordingly. Finally, we will look at each 
student’s grades individually, and we might decide to give a higher grade to some 
students who are slightly below a borderline. Students whose grades have improved 
significantly during the term, and students whose average has been pushed down by 
single low grade, will be the ones most likely to be boosted. 

The bottom line is that you should feel free to skip the extra credit problems, 
and you will still get an excellent grade in the course if you do well on the regular 
problems. However, if you are the kind of student who really wants to get the 
most out of the course, then I hope that you will find these extra credit problems 
challenging, interesting, and educational. (As described in the solutions to Problem 
Set 1, the problem sets in the course will not be graded in full, but instead only 
selected problems will actually be graded. The extra credit problems will never be 
among the graded problems.) 

PROBLEM 1: THE LAPLACIAN AS THE ANTI-LUMPINESS OPERA­
TOR (15 points) 

In this problem you will prove a relation that was stated in lecture. Le ϕ(fr) be  any  
scalar function of position fr. We are interested in relating the value of ϕ at an arbitrary 
point fr0 to the average value of ϕ on a sphere that is centered at fr0. While the point fr0 

is arbitrary, we can simpify our notation by choosing a coordinate system so that fr0 is 
the origin f0. Then the relation to be proved can be written 

   
1 1 1 

ϕ(f0) − ϕ̄(R) =  − d3 x − ∇2ϕ .  (1.1)
4π r<R r R

Here ϕ̄(R) represents the average value of ϕ on the surface of a sphere of radius R, which  
can be written explicitly as 

  
1 2π π 

ϕ̄(R) =  ϕ(R, θ, φ) sin  θ dθ dφ. (1.2)
4π 0 0 
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The integration in Eq. (1.1) is over the volume of a sphere of radius R, centered at the 
origin. The relation to lumpiness can be seen by thinking of ϕ as the density of a pudding. 
The equation implies that if ∇2ϕ = 0, then the value of ϕ at the origin is the same as 
the average value of its surroundings (no lumpiness). But if ∇2ϕ < 0, then the value of 
ϕ at the origin is higher than the average value of its surroundings (i.e., there is a lump). 

(a) Defining
 
1 1
 

g(r) ≡ − (1.3) 
r R 

for compactness, use the divergence theorem to show that 

  
d3 x∇ ·f g f = 0  .∇ϕ (1.4) 

r<R 

(b) Use index notation (i.e., f e i) to show that for arbitrary scalar functions g(fr)∇ ≡  ̂ i∂

and ϕ(fr)
 

∇ · (g ) =  f ∇ϕ+ g∇
f ∇f ϕ ∇g · f 2ϕ .  (1.5) 

(c) Use the identity in part (b) to rewrite the integrand of the integral of Eq. (1.4), and 
evaluate each term separately. We suggest that the integral of ∇f g · f∇ϕ be expressed 
in spherical polar coordinates. Show that the vanishing of the integral in Eq. (1.4), 
re-expressed in this way, implies Eq. (1.1). 

PROBLEM 2: CAPACITANCE OF A CYLINDRICAL CAPACITOR (10 
points) 

A very long conducting cylinder (length e 
and radius a) carrying a total charge +q is sur­
rounded by a thin conducting cylindrical shell 
(length e and radius b) with total charge -q, as  
shown in cross section in the sketch. 

(a) Using Gauss’s law, find an expression for the 
electric field Ef (fr) at  points  a < r < b. Ne­
glect end effects due to the finite length of 
the capacitor. 

(b) Using your expression for Ef from part (a), 
find the potential difference ∆V between the 
outer shell and the inner cylinder. 

(c) Derive an expression for the capacitance of this capacitor in terms of the quantities 
given. What is the capacitance per unit length? 

(d) Let the gap d = b − a between the cylinders be small compared to the radii, a and 
b. Show that in this case your answer for part (c) reduces to that for a parallel plate 
capacitor (see Griffiths Eq. (2.54) on p. 105). 

∫

http:a<r<b.Ne
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PROBLEM 3: THE ELECTRIC FIELD, POTENTIAL, AND ENERGY OF 
A UNIFORM SPHERE OF CHARGE (15 points) 

(a) A uniformly charged sphere of charge has radius R and total charge Q. Using Gauss’s 
law, calculate the electric field Ef (fr) everywhere. 

(b) Using the electric field you calculated in part (a), find the electric potential V (fr) 
everywhere. 

(c) Using the expression 

W = 
1 
2
 0 

all space 
| fE|2 d3 x ,  (3.1) 

for the total work needed to assemble the charge configuration, calculate W using 
your expressions above. 

(d) Using the expression 
1 

W = ρV d3 x ,  (3.2)
2 all space 

calculate W again using your expressions above. 

PROBLEM 4: CALCULATING FORCES USING VIRTUAL WORK (10 
points) 

Use “virtual work” to calculate the attractive force between conductors in the parallel 
plate capacitor (area A, separation d). That is, use conservation of energy to determine 
how much work must be done to move one plate by an infinitesimal amount, and then 
use the value of the work to determine the force. Do your virtual work computations in 
two ways: 

(a) keeping fixed the charges on the plates, and, 

(b) keeping a fixed the voltage between the plates. 

PROBLEM 5: MUTUAL CAPACITANCE (15 points) 

In lecture we discussed relations of the form 

n 
Qi = Cij Vj , i, j  = 1, 2, . . . , n  .  (5.1) 

j=1 

governing the potentials and charges of n conductors (with the potential taken to be zero 
at spatial infinity). 

(a) Prove that Cij = Cji. [Hint: Consider how much energy is needed to start with the 
system uncharged, then add charge Qi to conductor i, and then add charge Qj to 

∫

∫
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conductor j. Then consider starting again with the system uncharged, and perform­
ing these operations in the opposite order. That is, add charge Qj to conductor j, 
and then Qi to conductor i. Then think about how to use your answers to prove the 
desired result.] 

(b) Consider a two-conductor configuration.	 Calculate the conventional capacitance C 
in terms of C11, C12, C21, and C22. 

(c) Consider two concentric spherical conducting shells of radii	 a and b with a < b. 
Call the inner shell conductor 1, and the outer shell conductor 2. Calculate the 
matrix of capacitances Cij and use your result from part (b) to infer the conventional 
capacitance C. Compare your answer with Example 2.11 in Griffiths, p. 105. 

PROBLEM 6: SPACE CHARGE, VACUUM DIODES, AND THE CHILD­
LANGMUIR LAW (20 points) 

Griffiths Problem 2.48 (p. 107). Challenging! For part (e), you can solve the dif­
ferential equation either by guessing a solution and showing that it works, or by finding 
a first integral by the same method that is used in mechanics to go from Newton’s 2nd 
order equation of motion to the first order equation for the conservation of mechanical 
energy. 

PROBLEM 7: ∇2(1/r) IN THE LANGUAGE OF DISTRIBUTIONS (20 
points extra credit) 

This problem will have a longwinded pedagogical introduction, since it concerns an 
approach which was discussed in lecture, but is not discussed in the textbook. 

In Problem 5 of Problem Set 1, you evaluated −∇2(1/4πr) by replacing 1/r by√	 √ 
21/ r2 + a . After calculating ga(r) ≡ −∇2(1/4π r2 + a2), you showed that its integral 

over all space is 1, and that for any r  = 0 it approaches 0 as a → 0. This exercise was 
intended to convey a useful intuition about δ-functions, and about the relation 

1 −∇2 = δ3(fr) .	 (7.1)
4πr 

However, from the standpoint of a mathematically rigorous treatment, there is a short­
coming to this and all similar treatments of the δ-function as a limit of a sequence of 
functions. While the sequence of functions leads to reliable intuition, the precise math­
ematical picture is complicated by the ordering of limits. That is, you showed in your  
problem set solutions that ga(r) d3x = 1  for  any  a > 0, and hence 

all space 

lim ga(r) d3 x = 1  .	 (7.2) 
a→0 all space 

�

∫
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However, if we had taken the limit first, we would have found 

 
0 if r = 0

lim ga(r) = (7.3) 
a→0 ∞ if r = 0 ,  

and we showed in lecture that the integral of this function, defined as the area under 
the curve, is in fact zero. So we cannot quite say that ga(r) approaches a δ-function as 
a → 0. Instead, we have to keep in mind the slightly more complicated picture in which 
ga(r) acts like a δ-function when a is very very small, and behaves exactly as a δ-function 
if we take the limit a → 0 after any integrations have been carried out. 

Since the integral of the function described in Eq. (7.3) vanishes, there is no normal 
function that behaves as a Dirac δ-function. Thus the δ-function is technically not a 
function, but rather what the mathematicians call a generalized function, or  a  distribution. 
It is really the concept of integration that is being generalized, and a distribution is 
the integrand of a generalized integral. Starting with functions of one variable, we can 
consider an arbitrary function ϕ(x). Its integral, 

∞ 

ϕ(x) dx ,  (7.4) 
−∞ 

maps the function ϕ(x) into a single real number, the value of its integral. It is a linear 
map, in the sense that 

∞ ∞ ∞ 

[ϕ1(x) +  λϕ2(x)] dx = ϕ1(x) dx+ λ ϕ2(x) dx ,  (7.5) 
−∞ −∞ −∞ 

where λ is a constant. A distribution defines a generalized integral, which is an arbitrary 
linear map from the space of smooth “test” functions ϕ(x) to real numbers. These test 
functions are required not only to be smooth, but also to fall off rapidly at large values 
of |x|.* The distribution that corresponds to a δ-function is the map which takes the 
function ϕ(x) to  ϕ(x0), its value at some particular point x0. While there is no function 
that behaves as a Dirac δ-function, it is perfectly clear that this map from functions to 
real numbers is well-defined. Thinking of this map as a generalization of integration, we 
can write it as 

ϕ(x) δ(x− x0) dx ≡ ϕ(x0) . (7.6) 

* Various choices can be made for the precise restrictions on the space of test func­
tions. A frequently used choice is the space of Schwartz functions, which are infinitely 
differentiable, and which have the property that the function and all its derivatives fall 
off faster than any power at large |x|. The distributions associated with this definition of 
smoothness are called tempered distributions. 

�

∫

∫ ∫ ∫

∫
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But remember that the integral sign here does not describe the area under a curve; instead 
it denotes a linear map from the function ϕ(x) to a real number, and the symbol δ(x−x0) 
indicates the particular linear map which maps ϕ(x) to  its  value  at  x0, namely  ϕ(x0). 
Mathematically, Eq. (7.6) defines the δ-function, which is defined solely as a prescription 
for a generalized type of integration. 

The derivative of a distribution is defined so that generalized integration is consistent 
with the usual procedure of integration by parts: 

d dϕ(x)
ϕ(x) δ(x − x0) dx ≡ −  δ(x − x0) dx ≡ −ϕ'(x0) , (7.7)

dx dx 

where ϕ'(x) ≡ dϕ(x)/dx. Note that we do not include any boundary terms, as ϕ(x) is  
required to fall off at large |x| fast enough to cause any boundary terms to vanish. 

We are now ready to evaluate ∇2(1/r) in the language of distributions. Note that 
in the language of functions ∇2(1/r) is ill-defined, because 1/r is not differentiable at 
r = 0. But we can promote 1/r to a distribution by defining it as a mapping from test 
functions ϕ(fr) to numbers, where the mapping is given by the (ordinary) integral 

1 
d3 x .  (7.8)ϕ(fr) 

Note that even though 1/r is singular at r = 0, this integral is perfectly well defined, 
since in spherical polar coordinates we have 

d3 x = r dr sin θ dθ dφ .  (7.9) 
r 

By defining the derivative of a distribution by integration by parts, as in Eq. (7.7), we 
can write the distribution corresponding to ∇2(1/r), which I will call F [ϕ(fr)] for future 
reference: 

12 1 
ϕ(fr) ∇ d3 x = ϕ(fr) ∂i∂i d3 x (7.10a) 

r r 

1 
= − ∂iϕ(fr) ∂i d3 x (710b) 

1 
= ∇2ϕ(fr) d3 x ,  (7.10c) 

r 

r 

1 

r 

so 
1 

F [ϕ(fr)] ≡ ∇2ϕ(fr) d3 x .  (7.11) 
r 

∫ ∫

∫

∫ ( ) ∫ ( )

∫ ( )

∫ ( )

∫ ( )
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Note that the square brackets used for the argument of F is a common notation for a 
functional, i.e., a function of a function. Here F maps the function ϕ(fr) to the  number  
given by the (ordinary) integral on the right-hand side of Eq. (7.11). 

AT LAST: THE HOMEWORK PROBLEM: 

(a) Evaluate F [ϕ(fr)] (as defined by Eq. (7.11)) for an arbitrary smooth test function 
ϕ(fr) which falls off rapidly for large |fr|. Show that 

F [ϕ(fr)] = −4πϕ(f0) . (7.12) 

Since 

ϕ(fr) δ3(fr) =  ϕ(f0) , (7.13) 

Eq. (7.12) is equivalent to writing 

∇2 1 
= −4πδ3(fr) (7.14) 

in the sense of distributions, which is the result we seek. [Hint: Although Eq. (7.11) 
is the defining equation, there is nothing that prevents you from integrating by parts 
once to retrieve the integral in the form of Eq. (7.10b). Write this in spherical polar 
coordinates, and then try to evaluate it.] 

(b) Use the language of distributions to evaluate ∇2 ln r in two dimensions. (See Problem 
6(d) of Problem Set 1.) 

r 

∫

( )
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