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PROBLEM SET 5 REVISED∗ 

DUE DATE: Friday, October 12, 2012. Either hand it in at the lecture, or by 6:00 pm 
in the 8.07 homework boxes. 

READING ASSIGNMENT: None. (The material is related to Chapter 3 of Griffiths, 
which you should have already read.) 

CREDIT: This problem set has 90 points of credit plus 10 points extra credit. 

PROBLEM 1: A SPHERE WITH OPPOSITELY CHARGED HEMI­
SPHERES (15 points) 

Griffiths Problem 3.22 (p. 145). (This problem was held over from Problem Set 4.) 

PROBLEM 2: A CIRCULAR DISK AT A FIXED POTENTIAL (20 points) 

This problem is based on Jackson, Problem 3.3 (challenging!). 

A thin, flat, conducting circular disk of radius R is located in the x-y plane with its 
center at the origin, and is mantained at a fixed potential V0. 

(a) With the information that the surface charge density on a disk at fixed potential 
is proportional to (R2 − s2)−1/2, where  s is the distance out from the center of the 
disk, show that for r > R, 

∞   2l  2V0 R (−1)£ R 
V (r, θ) = 	  P2£(cos θ) . 

π r 2e + 1 r
£=0 

Hint: First find the field along the z-axis, and then use your knowledge about the 
general solution to Laplace’s equation to infer the angular dependence. 

(b) Calculate the capacitance of the disk, defined by	 Q = CV , where  Q is the total 
charge on the disk and V is the potential of the disk relative to |Ir | → ∞. 

PROBLEM 3: QUADRUPOLE AND OCTOPOLE TERMS OF THE MUL­
TIPOLE EXPANSION (20 points) 

Griffiths Problem 3.45 (pp. 158-159). For parts (a) and (d), you can find the answers 
either by starting with Griffiths’ Eq. (3.95) (p. 148) for the multipole expansion, or by 
starting with the integral expression (Griffiths’ Eq. (2.29), p. 84) for the potential and 
then expanding in powers of 1/r. Note  that  Qij and the octopole moment that you will 
find are examples of the traceless symmetric tensor formalism that we have discussed in 
lecture. 

∗ A typo was fixed in Problem 4(c), Eq. (4.12). In the original version of October 7, 
2012, the factor on the right-hand side was inverted. 
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PROBLEM 4: SPHERICAL HARMONICS AND TRACELESS SYMMET­
RIC TENSORS (20 points) 

In class we discussed the fact that any sum of spherical harmonics for a given index 
e can be  written as  

F£(θ, φ) =  C(£) 
n̂i1 n̂i2 . . . n̂i£ , (4.1)i1i2...i£ 

where C(£) is a traceless symmetric tensor, the indices i1, i2, . . . i£ are summed 1 to i1i2...i£ 

3, and 
n̂ = sin  θ cos φ ê1 + sin  θ sin φ ê2 + cos  θ ê3 (4.2) 

is a unit vector in the direction of (θ, φ). The standard functions Y£m(θ, φ) can be written 
in this formalism by finding the corresponding traceless symmetric tensors, which we will 

(£,m)call C :i1i2...i£ 
(£,m)

Y£m(θ, φ) =  C ˆ ˆ . . . ˆ . (4.3)i1i2...i£ 
ni1 ni2 ni£ 

(£,m)To construct the C n̂i1 n̂i2 . . . n̂i£ explicitly, we introduce the following basis of unit i1i2...i£ 

3-dimensional vectors: 
1(1) ≡ ˆ+ û u = √ (êx + iêy )
2 

(2) ≡ ˆ− 1 (4.4)û u = √ (êx − iêy )
2 

(3) ≡ ˆû z = êz . 

These complex-valued vectors are orthonormal in the sense that 

(i)∗ (j)û · û = δij , (4.5) 

but note that 
+ − û · û+ = û · û− = 0  , (4.6) 

+ +so we find conveniently that constructions such as ûi ûj are traceless as well as symmetric. 
(£,m)For m ≥ 0, C ˆ ˆ . . . ˆ is given by i1i2...i£ 

ni1 ni2 ni£ 

(£,m) + +Ci1i2 ...i£ 
= d£m { ûi1 

. . . ûim 
ẑim+1 . . . ẑi£ } , (4.7) 

where { xxx } means the traceless symmetric part of xxx. The constant of proportionality 
d£m is given by  

d£m = 
(−1)m(2e)! 

2£e!
2m (2e+ 1)  

4π (e+ m)! (e− m)! 
. (4.8) 

For m ≤ 0, 
C

(£,m) 
i1 i2...i£ 

= d£m { û − 
i1 
. . . û − 

i|m| 
ẑi|m|+1 

. . . ẑi£ } = C(£,|m|)∗ 
i1 i2...i£ 

. (4.9) 
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(a) Use this formalism to show that 

 
1	 21 

Y31(θ, φ) =  − (5 cos2 θ − 1) sin θ eiφ .	 (4.10)
4 4π 

Hint: You might benefit from that fact that Eq. (4.3) can alternatively be written 
as 

(£,m)
Y£m(θ, φ) =  C { n̂i1 n̂i2 . . . n̂i£ } ,	 (4.11)i1i2...i£ 

since { n̂i1 n̂i2 . . . n̂i£ } differs from n̂i1 n̂i2 . . . n̂i£ only by terms proportional to kro­
(£,m)necker δ-functions, and such terms will give no contribution because C is trace­i1 i2...i£ 

less. Once the expansion of { n̂i1 n̂i2 . . . n̂i£ } is written out explicitly, there is no need 
(£,m)to take the traceless symmetric part in the evaluation of C using Eq. (4.7). It i1 i2...i£ 

is a little easier to write the traceless symmetric part of n̂i1 n̂i2 . . . n̂i£ than it is to find 
the traceless symmetric part of the right-hand side of Eq. (4.7), since n̂i1 n̂i2 . . . n̂i£ 

is already symmetric. 

(b) Use this formalism to derive a general expression for Y££ that is valid for all e. 

(c) For cases with azimuthal symmetry, it is sufficient to use C(£) tensors that are i1i2...i£ 

constructed as traceless symmetric parts of products of ẑ, which corresponds to what 
in the usual formalism are called Legendre polynomials. The precise connection is 
that 

(2e)!
P£(cos θ) =  { ẑi1 ẑi2 . . . ẑi£ } n̂i1 n̂i2 . . . n̂i£2£(e!)2 

(4.12)
(2e)!

= ẑi1 ẑi2 . . . ẑi£ { n̂i1 n̂i2 . . . n̂i£ } .
2£(e!)2 

Use this relation to evaluate P4(cos θ), and compare your result with Table 3.1 of 
Griffiths (p. 138). 

PROBLEM 5: THE PRECISE ELECTRIC FIELD OF AN ELECTRIC 
DIPOLE (15 points plus 10 points extra credit) 

Griffiths Problem 3.42 (p. 157, 15 points). Griffiths felt (and I agree) that the answers 
to this problem are sufficiently subtle that he should give the answers in the statement 
of the problem. Your job, then, is to explain these answers. 

(c)	 (10 points extra credit) Note that Griffiths found the δ-function term in the expres­
sion for the electric field of a dipole by starting with an ill-defined expression (i.e., 
Vdip(r, θ) =  p cos θ/(4πE0r2) is not differentiable at r = 0), then calculating a wrong 
answer, and then noticing that the answer violated a general theorem. He then asked 
what could be changed in the answer to avoid claiming a result which is demonstrably 
false. He got the right answer, but one might hope to find a way to make everything 
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well-defined from the start. The method of distributions, or generalized functions,
is exactly that.

To define Vdip as a distribution, we define it in terms of what happens when we
multiply it by a test function ϕ(�r ) and then integrate over all space:

p cos θ
FVdip [ϕ(�r )] ≡

∫
ϕ(�r )

(
d3x . (5.1)

4πε 2
0r

)

The test function is required to be smooth, and to fall off rapidly at large |�r |. Note
that the integral is well-defined in spite of the factor of 1/r2, since the singularity is
canceled by the measure d3x = r2 dr sin θ dθ dφ. The derivative ∂iVdip ≡ ∂Vdip/∂x

i

is defined in the sense of distributions by formally integrating by parts. That is, one
might naively differentiate by writing

p cos θ
F∂iVdip [ϕ(�r )] = ϕ(�r )∂i d3x , (5.2)

2naively

∫ (
4πε0r

)

but this integral is ill-defined. The real definition in the sense of distributions is
given by

p cos θ
F∂iVdip [ϕ(�r )] = −

∫
∂iϕ(�r )

( )
d3x . (5.3)

4πε0r2

By definition there is no surface term associated with the integration by parts. One
can intuitively justify this by the assumption that ϕ(�r ) falls of rapidly with |�r |, but
in the logic of distribution theory, Eq. (5.3) is simply the definition of the derivative
of the distribution Vdip.

The integral on the right-hand side of Eq. (5.3) is a well-defined, ordinary integral.
The goal is to show that this gives Griffith’s expression (Eq. (3.106, p. 157)) for the
electric field of a dipole, δ-function term included. One way to do this is to separate
the integral into two pieces, r < ε and r > ε, where ε is a positive number which will
in the end be taken to zero. Then

F∂iVdip [ϕ(�r )] =
(1) (2)

F∂ V ϕ
dip

[ (�r )] + F
i ∂iVdi

[ϕ ,
p

(�r )] (5.4)

where
(1) θ

F∂ V [ϕ(�r )] = −
∫

p cos
∂iϕ(�r

i dip
)

r>ε

(
4πε0r2

)
d3x

(5.5)
(2) p cos θ

F∂iVdip
[ϕ(�r )] = −

∫
∂ ϕ(�r )

( )
d3

i x .
r<ε 4πε0r2

Looking at (2)
F∂ V [ϕ(�r )], one can see that it vanishes in the limit ε

write
i dip

→ 0. To see this,

∣ π 2π∣ (2) p ε

F∂iVdip
[ϕ(�r )]

| | ∫∣∣ ≤ ∫ ∫
max (∂iϕ) dr dφ dθ ≤ const ε . (5.6)

4πε r<ε0 0 0 0
∣ ∣
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Here maxr<ε (∂iϕ) represents the maximum value of | (∂iϕ) | in the region r < ε,
which is guaranteed by the smoothness of ϕ(�r ) to approach a constant as ε → 0. We
also used the facts that | sin θ| ≤ 1 and | cos θ| ≤ 1. Since we will evaluate Eq. (5.4)
in the limit ε → 0, we can forget about (2)

F∂iVdip
[ϕ(�r )].

Since the integral in (1)
F∂iVdip

[ϕ(�r )] has a lower limit > 0, we can evaluate it by
integrating by parts. We get no surface term at |�r | = ∞, by the properties of ϕ, but
we do find a surface term at r = ε:

(1) p cos θ p cos θ
F∂iVdip

[ϕ(�r )] = −
∫

∂ 3
i ϕ(�r ) d x+ ϕ(�r )∂i d3x . (5.7)

2 2
r>ε

[ (
4πε0r

)] ∫
r>ε

(
4πε0r

)

AT LAST: THE HOMEWORK PROBLEM:

Evaluate the right-hand side of Eq. (5.7), and show that it is equivalent to

(1) 1 1 1
F∂ V [ϕ(�r )] =

∫
ϕ(�r )

{
r

4
[
3(p� · r̂)ˆ − p 3 3

i i p
i 3

]
r

dip πε
− )
3 iδ (� d x . (5.8)

0 r ε0

}

One further hint: The identity proven in Problem 7(a) of Problem Set 1 may prove
useful.
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