
8.321 Quantum Theory-I Fall 2017

Prob Set 5

1. The Lagrangian of a charged particle in an electromagnetic field is ẋ

1˙L(~x, ~x) =
2
m~̇x

2 − qφ(~x) +
q ~~v · A (1)
c

and classical action is S =
∫ ˙ ~dtL(~x, ~x). Here φ,A are evaluated on the

particle trajectory.

(a) Show that the least action path satisfies the Euler-Lagrange equa-
tions

d

dt

∂L

∂~̇x
− ∂L

= 0 (2)
∂~x

Show explicitly that these lead to the familiar force law for a
charged particle in an electromagnetic field.

(b) Now specialize to the case of one dimension and zero magnetic
field. For a free particle find the least action path connecting
points x, t and x′, t′. Repeat for a particle moving in a linear
potential φ = −xE.

2. For a free particle, write the propagator K(x, t;x′, t′) as

im 2

N( − t′) exp

(
(x− x′)

t (3)
2h̄(t− t′)

)

From the composition law∫
dxK˜ (x, t;x,˜ t̃)K(x,˜ t̃;x′, t′) = K(x, t;x′, t′), t > t̃ > t′ (4)

obtain a condition for N(τ). Relate N(τ) to N∗(τ) (Hint: use uni-
tarity). Find the most general solutions to those two equations. Is
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N(τ) completely determined? What other information can you use to
determine N(τ) (aside from the Schrodinger equation)?

3. There is a an important class of problems where the stationary phase
approximation is a non-approximation, and yields an exact result for
the path integral. This happens when the Lagragian is a quadratic
polynomial of the position x and velocity ẋ. To prove this, consider
the propagator

)]
K(x, t′x′, t′) =

∫
[Dx(t)]

(
iS[x(t

exp (5)
h̄

)

An arbitrary path x(t) from x′, t′ to x, t can be expressed as a sum of
the classical (i.e least action) path xcl(t) with the same end points and
a displacement δx(t), as follows: x(t) = xcl(t) + δx(t). Substituting
this expression into the action, and noting that the terms in first order
in δx(t) cancel (why?), bring Eqn. ?? to the form

)]
K(x, t;x′, t′) = e

(
iS[xcl(t

xp
h̄

)∫
[Dδx(t)] exp

(
iS[δx(t)]

(6)
h̄

)

Crucially, only the prefactor exp
(
iS[xcl(t)] depends on the end points

h̄

x, x′, since the path integral is taken over closed

)
paths δx(t′) = δx(t) =

0. Thus the full dependence on x, x′ is captured by the stationary phase
factor, giving the propagator of the form A(t, t′) exp

(
iS[xcl(t)] .

h̄

)
(a) Use this approach to obtain the propagator for a free particle.

(b) Show that the propagator of a particle moving in a parabolic po-
tential, with Lagrangian L = 1

2
mẋ2 − 1mω2x2, is of the form

2

K(x, t;x′, t′) =

(
mω

1

2πih̄ sin(ω(t− t′))

) /2

exp

(
imω

[(x2 + x′2) cos(ω(t− t′)) 2
2h̄ sin(ω(t− t′))

− xx′]

)

The time dependence of this expression is periodic, matching the
periodicity of classical motion. Interestingly however the time
dependence features two singularities per period, occurring when
sin(ω(t− t′)) = 0. Comment on the origin of this behavior.
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4. (a) Use the result for the propagator in Prob 3b to determine the
energy eigenvalues of the simple harmonic oscillator, and show
explicitly that you get the usual result E =

(
n+ 1 hω¯

2

)
with n =

0, 1, .......

(b) Derive the ground state wave function ψ0(x) of the simple har-
monic oscillator from the propagator. You will find it convenient
to study the propagator in imaginary time by setting t = −iβ with
β real. Specifically consider K(x, t = −iβ;x′ = x, t′ = 0). First
show that the in limit β → ∞ the sum over eigenstates in the
expression for the propagator is dominated by the ground state.
Apply this to the propagator of the oscillator to extract |ψ0(x)|2
and show that it agrees with the well known answer.
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