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the other side and there is no relaxation. If the potential grows with time, the particle will
need to expend more energy to cross it and will not have enough energy to get back out of
the potential well, thus losing energy. If the potential shrinks with time, the particle will
gain energy as it crosses the well.
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As a galaxy or cluster forms, the gravitational potential changes significantly as mass accretes
and collapses into a halo. Averaging over all particles, the timescale for violent relaxation
tvr is

tvr =

〈(
dE
dt

)2

E2

〉−1/2

=

〈(
∂φ
∂t

)2
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〈
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(77)

where in the last step we used the time-dependent virial theorem (see Lynden-Bell 1967).
This occurs on roughly the same timescale as free-fall since this is the timescale at which
the potential changes during collapse. It’s very fast, hence ‘violent’ relaxation!

3 Modelling galaxies

So far, we have looked at the basic dynamical properties of galaxies. Now we discuss the
main ingredients of modelling galaxies:

• potential-density pairs (the common potential)
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• orbits (trajectories of stars orbiting in a potential)

• phase-space distribution function (distribution of orbits, Vlasov equation)

• stability (Jeans criterion)

• composition of stars (stellar populations), star formation rate, initial mass function

• chemical evolution of galaxies

• active galaxies

3.A Potential-density pairs

Stars move in a collective potential. What are interesting potentials and the related density
functions?

Scalar potential:

− ~∇φ =
1

m
~F (78)

Note that mφ = U is the potential energy of the system and using Poisson’s equation
∇2φ = 4πGρ, we get

φ(~r) = G

∫
ρ(~r)

|~r′ − ~r|
d3~r (79)

⇒ potential φ− density ρ− pairs! (80)
Examples:
• Kepler/point mass potential:

φ = −GM
r

(81)

To find ~F , we take the gradient of φ
1

m
~F =

GM

r2
êr . (82)

• Homogeneous sphere:

ρ(~r) =
M

4
3
πR3

~F =?

(83)

We do not have φ, so we need a different way to get ~F . We can use Gauss’s theorem
for gravity for a surface Sr with radius R enclosing a volume Vr:∫

Sr

~F · d~S =

∫
Vr

(~∇ · ~F )dV

= −m
∫
V

(~∇2φ)dV

= −4πGm

∫
ρ(~r)dV

= −4πGM(< r)m

(84)
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Since we’re working with gravity, we have ~F (r) = −F (r)êr and∫
Sr

~F · d~S =

∫
Sr

F (r)(−êr)d~S = −4πr2F (r) (85)

⇒ 4πr2F (r) = rπGM(< r)m (86)

So
Outside the sphere : r > R⇒ F (r) =

GMm

r2

Inside the sphere : r < R⇒ F (r) = 4πG
ρr

3
m

(87)

From these, we can now also get φ : 1
m
~F = −~∇2φ

Outside the sphere : r > R⇒ φ(r) =
GMm

r
+ constant

Inside the sphere : r < R⇒ φ(r) = 2πG
ρr2

3
m+ constant

(88)

• Mestel disk (example of a disk potential):
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Is this a disk? It’s hard to see based on the potential, so we need to find ρ. Let’s look
at Poisson’s equation:

∇2φ =
1

r2

∂
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(
r2∂φ

∂r

)
+

1
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∂
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∂ϕ︸ ︷︷ ︸
= 0, since no ϕ dependence

(90)

Using φ = v2
cφ0:

∇2φ =
v2
c

r2

∂

∂
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r2 1
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[
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)] (91)

We now calculate ∂φ0

∂θ
and ∂2φ0

∂θ2 . We assume cos θ > 0. The calculations are the same
or cos θ < 0 except for an overall sign change cos θ → − cos θ.

φ0 = ln

(
r

r0

)
+ ln

(
1 + cos θ

2

)
(92)
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Then
∂φ

∂θ
=

2

1 + cos θ

(
−sin θ

2

)
=

(
− sin θ

1 + cos θ

)
∂2φ0

∂θ2
= − cos θ

1 + cos θ
− sin2 θ

(1 + cos θ)2

(93)

So
cos θ

sin θ

∂φ0

∂θ
+
∂2φ0

∂θ2
= − 2 cos θ

1 + cos θ
− sin2 θ

(1 + cos θ)2

=
−2 cos θ − 2 cos2 θ − sin2 θ

(1 + cos θ)2

= −1 + cos2 θ + 2 cos θ

(1 + cos θ)2

= −(1 + cos θ)2

(1 + cos θ)2

= −1

(94)

For cos θ 6= 0, this gives ∇2φ = v2
c

r2 (1 − 1) = 0, so there is
no density for θ 6= π/2 and all mass is in a thin plane with
infinite density ρ (3D density).

We can calculate the surface density

Σ(r) =

∫ +∞

−∞

1

4πG
~∇2φ dz (95)

With z = r cos θ so dz = −r sin θdθ + cos θdr ≈ −r dθ since θ ≈ π/2, we get

Σ(r) =

∫
ρ dz

=

∫ π
2
−ε

π
2

+ε

1

4πG
~∇2φ(−r dθ) .

(96)

We go from π
2

+ ε where z < 0 to π
2
− ε where z > 0. We can then switch the bounds
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and change the overall sign
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(97)

When θ > π
2
, cos θ < 0 and | cos θ| = − cos θ, and when θ < π

2
, cos θ > 0 and

| cos θ| = cos θ. So we take the derivative using − cos θ in the first term and cos θ in
the second term

Σ(r) =
1

4πG

([
sin θ

1− cos θ

]
π
2

+ε

−
[
− sin θ
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2
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r
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(98)

• Navarro-Frenk-White profile (NFW):
empirical profile found in simulations of CDM
halos.

ρ(r) =
ρ0(

( r
a

) (
1 + r

a

)2 ∝

{
r−1 r � a

r−3 r � a
(99)

Simulations showed the ρ0 and a are strongly correlated for CDM halos, so halos are
approximately members of a 1-parameter family. The conventional choice for this
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parameter is r200, the distance which has an enclosed density 200 times the cosmic
critical density ρc (which we will cover later) or M200 = 200ρc

4
3
πr3

200.

The concentration of a halo is
c =

r200

a
(100)

Central result:
The second parameter c is only a very weak function of mass and for fixed mass, and
it is the same for all halos in that mass range.

φ = −4πρ0a
2 ln
(
1 + r

a

)
r
a

+ constant (101)

Related topics:

– Core-cusp problem: From observations of stellar dynamics, the inner profile of
halos flattens to a slope ∼ 0 (core) instead of −1 (cusp). This is possibly due to
supernova feedback, but it could also be resolved through modifications of cold
dark matter.

– Diversity of shapes problem: Observationally, halos display diversity in the shapes
of their profiles with some cuspier and some more cored profiles whereas, in simu-
lations, halos are universally described by the NFW profile and self-similar across
mass ranges (the profiles look the same when scaled).

– Missing satellite problem: Simulations produce more satellite halos than there are
observed satellite galaxies. It’s possible that not all subhalos form stars, so we
need to be able to find “dark subhalos." This could be done by looking for disrup-
tions in stellar streams or through gravitational lensing. Recently, however, there
have been many more satellites found as our observational techniques improve.

– Too-big-to-fail problem: This is related to the missing satellites problem, where
the number of predicted large halos doesn’t match the number of large galaxies
observed (but the total number of satellite halos is consistent). The gravitational
potential of these galaxies, however, is large enough that they should have col-
lected enough gas and stars to form galaxies and maintain their evolution (e.g.
not lose the stars through stripping).

3.B Orbits

Now that we have looked at potential-density pairs, we can study orbits in these potentials.
Orbits refer to the motion of stars through 6D phase space (~x(t), ~v(t)). Often, the integrals
of motion restrict the dimensionality of the orbit (1 per integral of motion).

Integrals of motion:
The orbital energy E is:

E =
1

2
v2 + φ(r) =

1

2
ṙ2 + φ(r) (102)
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