
ES.1803 Part I Solutions 

Topic 1. Introduction to DEs; modeling; separable equa-
tions 

Solutions 
1.1. Solution: 𝑥′(𝑡) = 𝑘𝑥(𝑃 − 𝑥), where 𝑘 is the constant of proportionality. 

1.2. Solution: Let 𝑇 (𝑡) be the temperature of the root beer. We’ll model this using 
Newton’s law of cooling: 

𝑇 ′(𝑡) = −𝑘(𝑇 − 𝐸); 𝑇 (0) = 20, 

where 𝑡 is time in minutes, 𝑘 is the cooling rate in units of 1/min and 𝐸 = 0 is the 
temperature of the environment. 
Since 𝐸 = 0, we can write this more simply as 𝑇 ′ + 𝑘𝑇 = 0, 𝑇 (0) = 20. 
This is the model for exponential decay. It’s solution is 𝑇 (𝑡) = 20𝑒−𝑘𝑡. 
We can find 𝑘 using the temperature at 𝑡 = 30 min.: 𝑇 (30) = 20𝑒−30𝑘 = 10. 
So, −30𝑘 = ln(0.5), which gives 𝑘 = − ln(0.5)/30 ≈ 0.0231. 
Now we can solve for the time 𝑡 when 𝑇 (𝑡) = 4: 20𝑒−𝑘𝑡 = 4 or −𝑘𝑡 = ln(0.2). 
So, 𝑡 = − ln(0.2)/𝑘 ≈ 70 minutes. 

𝑑𝑥 1.3. Solution: Separating variables gives 𝑦2 𝑑𝑦 = If we want a definite integral ln(𝑥) . 
with the variable 𝑥 in the limit we need to use a dummy variable. Integrating with 𝑢 going 
from 2 to 𝑥 gives 

𝑦(𝑥) 𝑥 𝑦(𝑥) 𝑥 𝑑𝑢 𝑑𝑢 ∫ 𝑦2 𝑑𝑦 = ∫ ln(𝑢) 
⇒ 

𝑦
3
3
∣ = ∫ ln(𝑢) . 

𝑦(2) 2 𝑦(2) 2 

𝑥 𝑦(𝑥)3 

− 
𝑦(2)3 𝑑𝑢 That is, = ∫3 3 2 ln(𝑢) . 

Now use the initial condition 𝑦(2) = 0 and solve for 𝑦: 

𝑥 1/3
𝑦(𝑥) = [3 ∫ .ln 

𝑑𝑢 
(𝑢)]

2 

𝑦 𝑑𝑦 1.4. Solution: Separating variables gives 𝑦 + 1 
= 𝑥 𝑑𝑥. 

𝑦 1 𝑥2 

Integrate (noting that 𝑦 + 1): 𝑦 − ln(𝑦 + 1) = 2 
+ 𝑐.𝑦 + 1 

= 1 − 

1 
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Use 𝑦(2) = 0 to find 𝑐 = −2. So, 𝑦 − ln(𝑦 + 1) = 
𝑥
2
2 

− 2. . 

𝑑𝑥 1.5. Solution: Separate variables: =√
1 − 𝑣 

𝑑𝑣 
2 𝑥 

. 

Integrating gives: sin−1(𝑣) = ln |𝑥| + 𝑐 or 𝑣 = sin(ln |𝑥| + 𝑐). 

1.6. Solution: The figure shows the piece of the tangent bisected by the point (𝑥, 𝑦) on 
the curve. Geometrically, we see the tangent line contains the points (𝑥, 𝑦) and (2𝑥, 0). So

0 − 𝑦 the slope of this line is 𝑥 . Since the slope is also the derivative 𝑑𝑦/𝑑𝑥, we have 2𝑥 − 𝑥 
= −𝑦 

the ODE: 
𝑑𝑦 −𝑦 
𝑑𝑥 

= 𝑥 . 

This differential equation is separable and is easily solved: 𝑦 = 𝐶/𝑥. 

x

y

(x, y)

y

2y

x x (2x, 0)
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Topic 2. Linear systems: input-response models 

Solutions 
2.1. Solution: Variation of parameters solution. 
In standard form the equation is 𝑦′ + 𝑥

2 𝑦 = 1. 

𝑥 𝑑𝑥 = 𝑒−2 ln(𝑥) = 1/𝑥2.The homegenous equation 𝑦′ + 𝑥
2 𝑦 = 0 has solution 𝑦ℎ(𝑥) = 𝑒− ∫ 2 

The variation of parameters formula is 

𝑦(𝑥) = 𝑦ℎ(𝑥) (∫ 𝑞(𝑥)/𝑦ℎ(𝑥) 𝑑𝑥 + 𝑐) . 

In this case this becomes 

1 𝑥
3 

+ 
𝑐 𝑦(𝑥) = 𝑥2 

(∫ 𝑥2 𝑑𝑥 + 𝑐) = .𝑥2 

2.2. Solution: Using the variation of parameters formula we have: 𝑥ℎ(𝑡) = 𝑒−𝑎𝑡 and 

𝑥(𝑡) = 𝑒−𝑎𝑡 [∫ 
𝑟(𝑡) ∫ 𝑟(𝑡)𝑒𝑎𝑡 𝑑𝑡 
𝑒−𝑎𝑡 

𝑑𝑡 + 𝑐] = 𝑒𝑎𝑡 

Since 𝑎 > 0, the denominator in the last expression above goes to infinity. 
First, assume the numerator also goes to infinity. Then we can use L’Hospital’s rule to find 
the limit. (The derivative of the numerator is immediate using the fundamental theorem of 
calculus.) 

∫ 𝑟(𝑡)𝑒𝑎𝑡 𝑑𝑡 𝑟(𝑡)𝑒𝑎𝑡 𝑟(𝑡) lim 𝑥(𝑡) = lim = lim = lim = 0.
𝑡→∞ 𝑡→∞ 𝑒𝑎𝑡 𝑡→∞ 𝑎𝑒𝑎𝑡 𝑡→∞ 𝑎 

Second, assume the numerator does not go to infinity, then clearly the ratio goes to 0. 

2.3. Solution: Newton’s law of cooling says 

𝑑𝑇 = −𝑘(𝑇 − 20), 𝑑𝑡 
where 𝑘 is the constant of proportionality. Solving (using separation of variables or variation 
of parameters) we have 

𝑇 (𝑡) = 𝑎𝑒−𝑘𝑡 + 20. 
Using 𝑇 (0) = 100, we get 𝑇 (0) = 100 = 𝑎 + 20, so 𝑎 = 80 and 𝑇 (𝑡) = 80𝑒−𝑘𝑡 + 20. 
Similarly, using 𝑇 (5) = 80, we get 𝑇 (5) = 80 = 80𝑒−5𝑘 + 20. Solving for 𝑘, we find 
𝑘 = − ln(3/4) > 0.5 

Thus we have 𝑇 (𝑡) = 80𝑒ln(3/4)𝑡/5 + 20. 
5 ln(2)When 𝑇 = 60, we have 60 = 80𝑒ln(3/4)𝑡/5 + 20. Solving for 𝑡, we find 𝑡 = ln(4/3) 

≈ 12 

minutes. 
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Topic 3. Input-response models continued 

Solutions 
3.1. Solution: (a) We use 𝑥′ = rate of salt in - rate of salt out. 

So, 𝑥′(𝑡) = −5𝑥/100, 𝑥(0) = 30. Solving we get: 𝑥(𝑡) = 30𝑒−𝑡/20 . 

(b) We use 𝑦′ = rate of salt in - rate of salt out. 
So, 𝑦′(𝑡) = 5𝑥/100 − 5𝑦/100, 𝑦(0) = 15. This is first-order linear DE. Rearranging, we get 

𝑥 3𝑦′ + 
𝑦 

2𝑒−𝑡/20.20 
= 20 

= 

We solve with the variation of parameters formula: The homogeneous solutions is 𝑦ℎ(𝑡) = 
𝑒−𝑡/20, 

𝑦ℎ(𝑡) 
𝑑𝑡 = 𝑒−𝑡/20 ∫ 

3
2𝑒−𝑡/20𝑒𝑡/20 𝑑𝑡 𝑦(𝑡) = 𝑦ℎ(𝑡) ∫ 

𝑓(𝑡)

= 𝑒−𝑡/20 ∫ 
3
2 

𝑑𝑡 = 𝑒−𝑡/20 (3 
2 

𝑡 + 𝐶) 

3 
2 

𝑡𝑒−𝑡/20 + 𝐶𝑒−𝑡/20.= 

We find 𝐶 by using the initial condition: 𝑦(0) = 𝐶 = 15, so 𝐶 = 15. 

Solution: 𝑦(𝑡) = 2
3 𝑡𝑒−𝑡/20 + 15𝑒−𝑡/20 . 



5 TOPIC 4. COMPLEX NUMBERS AND EXPONENTIALS 

Topic 4. Complex numbers and exponentials 

Solutions 
1 − 𝑖 

√
2𝑒−𝑖𝜋/4 

= 𝑒−𝑖𝜋/2 4.1. Solution: Method 1. = −𝑖.1 + 𝑖 = √
2𝑒𝑖𝜋/4 

1 − 𝑖 1 − 𝑖 1 − 𝑖 −2𝑖 Method 2. = ⋅ = −𝑖.1 + 𝑖 1 + 𝑖 1 − 𝑖 = 2 

4.2. (a) Solution: Method 1: (1 − 𝑖)4 = (
√

2𝑒−𝑖𝜋/4)4 = 4𝑒−𝑖𝜋 = −4. 
Method 2: (1 − 𝑖)4 = 14 − 4 ⋅ 13𝑖 + 6 ⋅ 12𝑖2 − 4 ⋅ 1𝑖3 + 𝑖4 = 1 − 4𝑖 − 6 + 4𝑖 + 1 = −4 

= (2𝑒𝑖𝜋/3)3 = 8𝑒𝑖𝜋 (b) Solution: Method 1: (1 + 𝑖
√

3)3 = −8. 
Method 2: (1 + 𝑖

√
3)3 = 13 + 3 ⋅ 12(𝑖

√
3) + 3 ⋅ 1(𝑖

√
3)2 + (𝑖

√
3)3 = 1 + 3𝑖

√
3 − 9 − 𝑖3

√
3 = −8 

4.3. Solution: Using Euler’s formula we can write 𝑒3𝑖𝜃 two ways. 

𝑒3𝑖𝜃 = cos(3𝜃) + 𝑖 sin(3𝜃) 

𝑒3𝑖𝜃 = (𝑒𝑖𝜃)3 = (cos(𝜃) + 𝑖 sin(𝜃))3 = cos(𝜃)3 + 𝑖3 cos2(𝜃) sin(𝜃) − 3 cos(𝜃) sin2(𝜃) − 𝑖 sin3(𝜃) 

Equating the real and imaginary parts of each expression we have 

cos(3𝜃) = cos(𝜃)3 − 3 cos(𝜃) sin2(𝜃), sin(3𝜃) = 3 cos2(𝜃) sin(𝜃) − sin3(𝜃) 

4.4. (a) Solution: 𝑥4 = −16 = 16𝑒𝑖𝜋+𝑖2𝜋𝑘, 𝑘 = 0, 1, 2, …. So, 

𝑥 = 2𝑒𝑖𝜋/4+𝑖2𝜋𝑘/4 = 2𝑒𝑖𝜋/4, 2𝑒𝑖3𝜋/4, 2𝑒𝑖5𝜋/4, 2𝑒𝑖7𝜋/4 

= 
√

2(1 + 𝑖), 
√

2(−1 + 𝑖), 
√

2(−1 − 𝑖), 
√

2(1 − 𝑖) = 
√

2(±1 ± 𝑖) . 

Here are the roots displayed graphically. (-16 doesn’t fit on the graph) 

x

y

to −16

1 + i−1 + i

−1− i 1− i

(b) Solution: This is quadratic in 𝑥2, so using the quadratic formula 

𝑥2 = 
−2 ± 

√

2
4 − 16 = −1 ± 𝑖

√
3 = 2𝑒𝑖2𝜋/3, 2𝑒𝑖4𝜋/3. 
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Thus, 
√

3 
√

3𝑥 = ±
√

2𝑒𝑖𝜋/3, ±
√

2𝑒𝑖2𝜋/3 = ±
√

2 (1
2 + 𝑖 2 

) , ±
√

2 (−2
1 + 𝑖 2 

) 

4.5. Solution: Let 𝐼𝑐 = ∫ 𝑒3𝑥(cos(4𝑥) + 𝑖 sin(4𝑥)) 𝑑𝑥 = ∫ 𝑒(3+4𝑖)𝑥 𝑑𝑥. It is clear that 

𝐼 = Im(𝐼𝑐). 
𝑒(3+4𝑖)𝑥 

Computing: 𝐼𝑐 = 3 + 4𝑖 
Using polar form: 3 + 4𝑖 = 5𝑒𝑖𝜙, where 𝜙 = Arg(3 + 4𝑖) = tan−1(4/3) in the first quadrant. 
So, 

= 𝑒3𝑥 𝑒4𝑖𝑥 𝑒3𝑥 

5 
𝑒𝑖(4𝑥−𝜙).𝐼𝑐 =5𝑒𝑖𝜙 

𝑒3𝑥 

Thus, 𝐼 = Im(𝐼𝑐) = sin(4𝑥 − 𝜙). 5 
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Topic 5. Homogeneous, linear, constant coefficient DEs 

Solutions 
5.1. (a) Solution: Characteristic equation: 𝑟2 − 3𝑟 + 2 = 0. 
Roots: 𝑟 = 1, 2. 
Modal solutions: 𝑦1(𝑡) = 𝑒𝑡, 𝑦2(𝑡) = 𝑒2𝑡. 
General solution by superposition: 𝑦(𝑡) = 𝑐1𝑦1 + 𝑐2𝑦2 = 𝑐1𝑒𝑡 + 𝑐2𝑒2𝑡. 
(b) Solution: Characteristic equation: 𝑟2 + 2𝑟 + 2 = 0. 
Roots: 𝑟 = −1 ± 𝑖. 
Two solutions: 𝑦1(𝑡) = 𝑒−𝑡 cos(𝑡), 𝑦2(𝑡) = 𝑒−𝑡 sin(𝑡). 
General real-valued solution by superposition: 

𝑦(𝑡) = 𝑐1𝑦1(𝑡) + 𝑐2𝑦2(𝑡) = 𝑐1𝑒−𝑡 cos(𝑡) + 𝑐2𝑒−𝑡 sin(𝑡) = 𝐴𝑒−𝑡 cos(𝑡 − 𝜙). 

(c) Solution: Characteristic equation: 𝑟2 − 2𝑟 + 5 = 0. 
Roots: 𝑟 = 1 ± 2𝑖. 
Two solutions: 𝑦1(𝑡) = 𝑒𝑡 cos(2𝑡), 𝑦2(𝑡) = 𝑒𝑡 sin(2𝑡). 
General real-valued solution by superposition: 

𝑦(𝑡) = 𝑐1𝑦1(𝑡) + 𝑐2𝑦2(𝑡) = 𝑐1𝑒𝑡 cos(2𝑡) + 𝑐2𝑒𝑡 sin(2𝑡) = 𝐴𝑒𝑡 cos(2𝑡 − 𝜙). 

For the initial condition it’s easiest to use the rectangular form of the solution. 

𝑦(0) = 1 = 𝑐1 

𝑦′(0) = −1 = 𝑐1 + 2𝑐2 ⇒ 𝑐2 = −1. 

So, 𝑦(𝑡) = 𝑒𝑡 cos(2𝑡) − 𝑒𝑡 sin(2𝑡). 
5.2. (a) Solution: Characteristic equation: 𝑟6 − 1 = 0.√

3 
√

3𝑟 = 𝑒𝑖2𝜋𝑛/6 Roots: , 𝑛 = 0, 1, 2, 3, 4, 5. So, 𝑟 = ±1, 2
1 ± 𝑖 2 

, −2
1 ± 𝑖 

Modal solutions: 𝑦1(𝑡) = 𝑒𝑡, 𝑦2(𝑡) = 𝑒−𝑡, 𝑦3 = 𝑒𝑡/2 cos(
√

3𝑡/2), 𝑦
2
4 = 𝑒𝑡/2 sin(

√
3𝑡/2),

𝑦5 = 𝑒−𝑡/2 cos(
√

3𝑡/2), 𝑦6 = 𝑒−𝑡/2 sin(
√

3𝑡/2) 

General solution by superposition: 𝑦(𝑡) = 𝑐1𝑦1 + 𝑐2𝑦2 + 𝑐3𝑦3 + 𝑐4𝑦4 + 𝑐5𝑦5 + 𝑐6𝑦6. 
(b) Solution: Characteristic equation: 𝑟4 + 16 = 0.

𝑟 = 2𝑒𝑖𝜋/4+𝑖2𝜋𝑛/4 Roots: , 𝑛 = 0, 1, 2, 3. So, 𝑟 = ±
√

2 ± 𝑖
√

2. 
Modal solutions: 𝑦1(𝑡) = 𝑒

√
2𝑡 cos(

√
2𝑡), 𝑦2(𝑡) = 𝑒

√
2𝑡 sin(

√
2𝑡), 𝑦3 = 𝑒−

√
2𝑡 cos(

√
2𝑡),

𝑦4 = 𝑒−
√

2𝑡 sin(
√

2𝑡) 

General solution by superposition: 𝑦(𝑡) = 𝑐1𝑦1 + 𝑐2𝑦2 + 𝑐3𝑦3 + 𝑐4𝑦4 
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Topic 6. Operators, ERF and SRF 

Solutions 
Note: the Exponential Response Formula is also called the Exponential Input Theorem. 

6.1. (a) Solution: Particular solution (using ERF): The characteristic polyomial is
𝑃(𝑟) = 𝑟2 + 6𝑟 + 12, so 

𝑒2𝑡 𝑒2𝑡 

𝑦𝑝(𝑡) = 𝑃(2) 
= 28 . 

Homogeneous solution: 𝑃(𝑟) = 0 ⇒ characteristic roots are 𝑟 = −3 ± 
√

3𝑖. 
So, 𝑦ℎ(𝑡) = 𝑐1𝑒−3𝑡 cos(

√
3𝑡) + 𝑐2𝑒−3𝑡 sin(

√
3𝑡). The general solution is 

𝑒2𝑡 

𝑦(𝑡) = 𝑦𝑝 + 𝑦ℎ = 28 
+ 𝑐1𝑒−3𝑡 cos(

√
3𝑡) + 𝑐2𝑒−3𝑡 sin(

√
3𝑡). 

(b) Solution: More quickly than in Part (a): 𝑃(𝑟) = 𝑟2+4𝑟+12. So, 𝑃 (−2) = 4−8+12 = 
8 ⇒ 𝑦𝑝(𝑡) = 𝑒−2𝑡 .8 

6.2. (a) Solution: Homogenous solution: (from Problem 1) 𝑦ℎ(𝑡) = 𝑐1𝑒−3𝑡 + 𝑐2𝑒−4𝑡 

Particular solution: Complexify: 𝑧″ + 7𝑧′ + 12𝑧 = 𝑒2𝑖𝑡, 𝑦 = Re(𝑧). 
Exponention Response Formula: 𝑃 (2𝑖) = 8 + 14𝑖 = 2

√
65𝑒𝑖𝜙, where 

𝜙 = Arg(8 + 14𝑖) = tan−1(7/4) in Q1. 

𝑒2𝑖𝑡 𝑒2𝑖𝑡 = 𝑒𝑖(2𝑡−𝜙) . Therefore, 𝑦𝑝(𝑡) = Re(𝑧𝑝) = 
cos(2𝑡 − 𝜙) So, 𝑧𝑝(𝑡) = 𝑃 (2𝑖) = 2

√
65𝑒𝑖𝜙 2

√
65 

.2
√

65 

𝑦(𝑡) = 𝑦𝑝 + 𝑦ℎ = 
cos(2𝑡 − 𝜙) + 𝑐1𝑒−3𝑡 + 𝑐2𝑒−4𝑡.2

√
65The general solution is 

sin(2𝑡 − 𝜙) (b) Solution: Use 𝑧𝑝 from Part (a): 𝑦𝑝(𝑡) = Im(𝑧𝑝) = .2
√

65 

(c) Solution: Complexify: 𝑃 (𝐷)𝑧 = 𝑒(2+3𝑖)𝑡, 𝑦 = Re(𝑧). 
Use ERF: 𝑃 (2+3𝑖) = 21+33𝑖 = 3

√
170𝑒𝑖𝜙, where 𝜙 = Arg(21 + 33𝑖) = tan−1(11/7) in Q1. 

𝑒(2+3𝑖)𝑡 𝑒2𝑡𝑒𝑖(3𝑡−𝜙) 𝑒2𝑡 cos(3𝑡 − 𝜙) 𝑧𝑝(𝑡) = = ⇒ 𝑦𝑝(𝑡) = Re(𝑧𝑝) = .3
√

170𝑒𝑖𝜙 3
√

170 3
√

170 

𝑦ℎ(𝑡) = 𝑐1𝑒−3𝑡 + 𝑐2𝑒−4𝑡 Homogenous solution: (from previous problems) . 

𝑒2𝑡 cos(3𝑡 − 𝜙) General solution is 𝑦(𝑡) = 𝑦𝑝 + 𝑦ℎ = + 𝑐1𝑒−3𝑡 + 𝑐2𝑒−4𝑡.3
√

170 

6.3. Solution: Try the ERF: 𝑃(−4) = 0. So we must use the extended ERF: 𝑦𝑝(𝑡) = 
𝑡𝑒−4𝑡 

𝑃 ′(−4) . 
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𝑃(𝑟) = 𝑟2 + 7𝑟 + 12 ⇒ 𝑃 ′(𝑟) = 2𝑟 + 7 ⇒ 𝑃 ′(−4) = −1 ⇒ 𝑦𝑝(𝑡) = −𝑡𝑒−4𝑡. 

6.4. (a) Solution: Try the sinusoidal response formula: We have 𝑃(𝑟) = 𝑟2 + 9, so
𝑃(𝑖) = 8. 

𝑦𝑝(𝑡) = 
cos(𝑡)Thus, |𝑃 (𝑖)| = 8 and Arg(𝑃 (𝑖)) = 0 ⇒ .8 

(b) Solution: We have 𝑃(𝑟) = 𝑟2 +9. Since 𝑃(3𝑖) = 0, we must use the extended version 
of the SRF. 

𝑡 cos(3𝑡 − 𝜙) 𝑦𝑝(𝑡) = , where 𝜙 = Arg(𝑃 ′(3𝑖)).|𝑃 ′(3𝑖)| 
𝑃 ′(𝑟) = 2𝑟. So, 𝑃 ′(3𝑖) = 6𝑖 ⇒ |𝑃 ′(3𝑖)| = 6, 𝜙 = Arg(𝑃 ′(3𝑖)) = 𝜋/2. 

𝑡 cos(3𝑡 − 𝜋/2) 𝑡 sin(3𝑡)Thus, 𝑦𝑝(𝑡) = = .6 6 

Note: We also could have done this by complexifying and using the extended ERF. 

6.5. Solution: We have 𝑃(𝑟) = 𝑟4 + 2𝑟2 + 4. 
First we find the homogeneous solution. The characteristic polynomial, 𝑟4 + 2𝑟2 + 4 = 0, is 
a quadratic in 𝑟2. That is, if 𝑢 = 𝑟2, then 𝑢2 + 2𝑢 + 4 = 0 so we have roots 

𝑟2 = −1 ± 𝑖
√

3 = 2𝑒𝑖2𝜋/3, 2𝑒−𝑖2𝜋/3. 

Taking the two square roots for each of these we have 
√

2 
√

6
√

2 
√

6𝑟 = 
√

2𝑒𝑖𝜋/3, −
√

2𝑒𝑖𝜋/3, 
√

2𝑒−𝑖𝜋/3, −
√

2𝑒−𝑖𝜋/3 = 2 
± 𝑖 2 

, − 2 
± 𝑖 2 . 

So the general real-valued homogeneous solution is 

𝑦ℎ(𝑡) = 𝑐1𝑒
√

2𝑡/2 cos(
√

6𝑡/2) + 𝑐2𝑒
√

2𝑡/2 sin(
√

6𝑡/2) + 𝑐3𝑒−
√

2𝑡/2 cos(
√

6𝑡/2) + 𝑐4𝑒−
√

2𝑡/2 sin(
√

6𝑡/2) . 

To find the particular solution, we use the sinusoidal response formula: 𝑦𝑝(𝑡) = 
cos(3𝑡 − 𝜙) .|𝑃 (3𝑖)| 

𝑃(3𝑖) = 81 − 18 + 4 = 67, so |𝑃 (3𝑖)| = 67 and 𝜙 = Arg(𝑃 (3𝑖)) = 0. Thus we have 

𝑦𝑝(𝑡) = 
cos(3𝑡) .67 

The general real-valued solution is 𝑦(𝑡) = 𝑦𝑝(𝑡) + 𝑦ℎ(𝑡). 
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Topic 7. Inhomegenous DEs; UC methods; theory 

Solutions 
7.1. (a) Solution: The input is a polynomial of degree 1, so we try a solution of the 
same degree: 𝑦𝑝(𝑡) = 𝐴𝑡 + 𝐵. Computing derivatives and substituting this into the DE we 
get: 

𝑦𝑝 = 𝐴𝑡 + 𝐵 
𝑦𝑝

′ = 𝐴 
𝑦𝑝

″ = 0 
𝑦𝑝

″ − 𝑦𝑝
′ + 3𝑦𝑝 = 3𝐴𝑡 + (−𝐴 + 3𝐵) = 3𝑡 + 5. 

Equating coefficients we get: 

Coefficients of 𝑡 ∶ 3𝐴 = 3 
Coefficients of 1 ∶ −𝐴 +3𝐵 = 5 

Solving these equations we get: 𝐴 = 1, 𝐵 = 2. Our answer is 𝑦𝑝(𝑡) = 𝑡 + 2. 
(b) Solution: The input is a polynomial of degree 2, so we try a solution of the same 
degree: 𝑦𝑝(𝑡) = 𝐴𝑡2 + 𝐵𝑡 + 𝐶. Computing derivatives and substituting this into the DE we 
get: 

𝑦𝑝 = 𝐴𝑡2 + 𝐵𝑡 + 𝐶 
𝑦𝑝

′ = 2𝐴𝑡 + 𝐵 
𝑦𝑝

″ = 2𝐴 
𝑦𝑝

″ + 8𝑦𝑝
′ + 7𝑦𝑝 = 7𝐴𝑡2 + (16𝐴 + 7𝐵)𝑡 + (2𝐴 + 8𝐵 + 7𝐶) = 𝑡2 

Equating coefficients we get: 

Coefficients of 𝑡2 ∶ 7𝐴 = 1 
Coefficients of 𝑡 ∶ 16𝐴 +7𝐵 = 0 
Coefficients of 1 ∶ 2𝐴 +8𝐵 +7𝐶 = 0 

Solving these equations we get: 𝐴 = 1/7, 𝐵 = −16/49, 𝐶 = 114/73. Our answer is 

𝑦𝑝(𝑡) = 𝑡2/7 − 16𝑡/49 + 114/73. 
(c) Solution: Since the input is constant (degree 0) we try a constant solution 𝑦𝑝(𝑡) = 𝐴. 
This is easy to substitute into the DE. We get 2𝐴 = 21, so 𝑦𝑝(𝑡) = 21/2. 

7.2. (a) Solution: Differentiating 𝑦 = 𝑡2 we have: 𝑦 = 𝑡2; 𝑦′ = 2𝑡; 𝑦″ = 2. There are 
many ways to combine these to get 0. Here is one 

𝑦″ + 
1
𝑡 𝑦′ − 𝑡

4
2 𝑦 = 0. 

(b) Solution: The Existence and Uniqueness Theorem requires the coefficients to be 
continuous. In our answer to Part (a), neither 𝑝(𝑡) = 1/𝑡 or 𝑞(𝑡) = −4/𝑡2 is continuous at 
0. 
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Topic 8. Applications: stability 

Solutions 
8.1. Solution: The characteristic equation is 𝑟2 + 𝑏𝑟 + 4 = 0. This has roots 

−𝑏 ± 
√

𝑏2 − 16 𝑟 = .2 

(a) The equation has oscillatory solutions if the characteristic roots are complex (more 

precisely: have nonzero imaginary part), This happens when 𝑏2 − 16 < 0, i.e., |𝑏| < 4. 
(b) The solutions are damped oscillations if the characteristic roots are complex with 
negative real part. Looking at the formula for the roots, this happens when 𝑏2 − 16 < 0 
and 𝑏 > 0, i.e., 0 < 𝑏 < 4. 

8.2. Solution: The characteristic equation is 𝑚𝑟2 + 𝑏𝑟 + 𝑘 = 0. So the roots are 

−𝑏 ± 
√

𝑏2 − 4𝑚𝑘 𝑟 = .2𝑚 

Critical damping happens when the roots are repeated, i.e., when the discriminant 𝑏2 − 4𝑚𝑘 = 0. 

8.3. (a) Solution: The DE becomes 𝐿𝑞″ + 𝐶
𝑞 = 0. The characteristic roots are 

±√1/𝐿𝐶 𝑖. So the general solution is 

𝑞(𝑡) = 𝑐1 cos(𝑡/
√

𝐿𝐶) + 𝑐2 sin(𝑡/
√

𝐿𝐶) 

This shows 𝑞 is periodic. Note, this is our standard equation for simple harmonic motion. 
(b) Solution: Oscillating current means complex characteristic roots. The roots are 

−𝑅 ± √𝑅2 − 4𝐿/𝐶 
2𝐿 

These are complex when 𝑅2 − 4𝐿/𝐶 < 0. 
(c) Solution: The DE is 𝐿𝑖″ + 𝑖/𝐶 = 𝜔𝐸0 cos(𝜔𝑡). (Here 𝑖 is current not 

√
−1.) This is 

an undamped oscillator with natural frequence 𝜔0 = 1/
√

𝐿𝐶. The response will be large if 
𝜔 ≈ 𝜔0. 
Said differently, the amplitude of the response is 

𝜔𝐸0 𝜔𝐸0
|𝑃 (𝑖𝜔)| = |1/𝐶 − 𝐿𝜔2| 

This is large when 𝜔 ≈ 1/
√

𝐿𝐶. 

8.4. (a) Solution: The roots are −1 ± 
√

1 − 𝑐. 
𝑐 < 0: both roots are real, one is positive and one negative, 
𝑐 = 0; roots are 0 and -2, 
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0 < 𝑐 < 1; roots are real and negative, 
𝑐 = 1; roots are repeated (-1,-1), 
𝑐 > 1; roots are complex with negative real part. 
(b) Solution: 

roots: 0,-2 roots: repeated 

real: one +, one - complex: real part -real: both - 𝑐 
0 1 

unstable stable 

Extra material on non-constant coefficient linear equations. 
Note. In ES.1803, we used to do a little work with second-order nonconstant coefficient 
DEs. The following two problems are about such equations. To solve them, you will need 
the following formulas. 
1. Wronskian of two functions: For functions 𝑦1(𝑥) and 𝑦2(𝑥), their Wronskian is 

𝑦2(𝑥)𝑊 (𝑥) = det [𝑦1(𝑥)
𝑦1

′ (𝑥) 𝑦2
′ (𝑥)] . 

2. Variation of parameters formula: Consider the inhomogeneous second-order linear DE 
and its associated homogeneous equation. 

𝑦″ + 𝑝(𝑥)𝑦′ + 𝑞(𝑥)𝑦 = 𝑓(𝑥) ((I) Inhomogeneous) 

𝑦″ + 𝑝(𝑥)𝑦′ + 𝑞(𝑥)𝑦 = 0 ((H) Homogeneous) 

If 𝑦1 and 𝑦2 are basic solutions to (H), then the solution to (I) is given by 

𝑦(𝑥) = −𝑦1(𝑥) (∫ 
𝑦2(𝑥) 

𝑊(𝑥)𝑓 𝑑𝑥 + 𝐶2) . 𝑊(𝑥)𝑓(𝑥) 𝑑𝑥 + 𝐶1) + 𝑦2(𝑥) (∫ 
𝑦1(𝑥) 

Here, 𝑊 (𝑥) is the Wronskian of 𝑦1, 𝑦2. 

8.5. (a) Solution: To use variation of parameters, we need two indendent homogeneous 
solutions. We find these first. Since this is constant coefficien, we could use the characteristic 
equation technique. Instead, we simply notice that 𝑦″ + 𝑦 = 0 models the simple harmonic 
oscillator with frequency 1. Two solutions are 𝑦1(𝑥) = cos 𝑥, 𝑦2(𝑥) = sin 𝑥. 
We use the variation of parameters formula given above with 𝑓(𝑥) = tan 𝑥 and the Wron-
skian 

𝑦1 𝑦2𝑊 (𝑥) = ∣ ∣ = 𝑦1(𝑥)𝑦2
′ (𝑥) − 𝑦1

′ (𝑥)𝑦2(𝑥) = cos 𝑥 cos 𝑥 + sin 𝑥 sin 𝑥 = 1.𝑦1
′ 𝑦2

′ 
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Thus a particular solution is 

𝑦(𝑥) = − cos 𝑥 ∫ sin 𝑥 tan 𝑥 𝑑𝑥 + sin 𝑥 ∫ cos 𝑥 tan 𝑥 𝑑𝑥 

= − cos 𝑥 ∫ 
sin2 𝑥 
cos 𝑥 

𝑑𝑥 + sin 𝑥 ∫ sin 𝑥 𝑑𝑥 

= − cos 𝑥 ∫ 
1 − cos2 𝑥 𝑑𝑥 − sin 𝑥 cos 𝑥 𝑑𝑥 cos 𝑥 

= − cos 𝑥 ∫ sec 𝑥 − cos 𝑥 𝑑𝑥 − sin 𝑥 cos 𝑥 

= − cos 𝑥(ln(| sec 𝑥 + tan 𝑥|) − sin 𝑥) − sin 𝑥 cos 𝑥 

= − cos 𝑥 ln(| sec 𝑥 + tan 𝑥|) 

(Note: because the problem asked for a particular solution, we didn’t include the constants 
𝐶1 and 𝐶2 from the variation of parameters formula.) 

(b) Solution: Two independent homogeneous solutions are 𝑦1(𝑥) = 𝑒𝑥, 𝑦2(𝑥) = 𝑒−3𝑥. 
Thus, 𝑊 (𝑥) = −4𝑒−2𝑥 and (keeping careful track of minus signs) 

𝑒𝑥 

𝑦(𝑥) = 4 
∫ 𝑒−2𝑥 𝑑𝑥 − 

𝑒−3𝑥
∫ 𝑒2𝑥 𝑑𝑥 = −1

4𝑒−𝑥.4 

Note: the problem only calls for a particular solution, so we don’t add in the general 
homogeneous solution. 
(c) Solution: Two independent homogeneous solutions are 𝑦1(𝑥) = cos(2𝑥), 𝑦2(𝑥) = 
sin(2𝑥). 
Thus, 𝑊(𝑥) = 2. 

𝑦(𝑥) = − cos(2𝑥) ∫ 
sin(2𝑥)

2 
sec2(2𝑥) 𝑑𝑥 + sin(2𝑥) ∫ 

cos(2𝑥)
2 
sec2(2𝑥) 𝑑𝑥 

= − cos(2𝑥) ∫ sin(2𝑥)(cos(2𝑥))−2 

𝑑𝑥 + sin(2𝑥) ∫ 
sec(2𝑥) 𝑑𝑥 2 2 

= − cos(2𝑥)(cos(2𝑥))−1 

+ sin(2𝑥) ln(sec(2𝑥) + tan(2𝑥))
4 4 

= −1
4 

+ sin(2𝑥) ln(sec(2𝑥) + tan(2𝑥)) .4 

Note: the problem only calls for a particular solution, so we don’t add in the general 
homogeneous solution. 

8.6. Solution: Wronskian 𝑊 = 𝑦1𝑦2
′ − 𝑦1

′ 𝑦2 = −1/𝑥. In order to use the variation of 
parameters formula, we need to write the DE in standard form as 

𝑦″ + 𝑥
1 𝑦′ + (1 − 4𝑥

1
2 ) 𝑦 = 

cos(𝑥) .𝑥1/2 

Thus, 
𝑦(𝑥) = 

sin√(𝑥)
𝑥 

∫ cos2(𝑥) 𝑑𝑥 − 
cos√(𝑥)

𝑥 
∫ sin(𝑥) cos(𝑥) 𝑑𝑥. 
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The above answer is probably good enough. Carrying out the integration: 

𝑦(𝑥) = 
sin√(𝑥)

𝑥 
(𝑥

2 
+ 

sin(2𝑥)) − 
cos√(𝑥)

𝑥 
(sin2(𝑥))4 2 

= 
sin√(𝑥)

𝑥 
(𝑥

2 
+ 

2 sin(𝑥) cos(𝑥)) − 
cos√(𝑥)

𝑥 
(sin2(𝑥))4 2 

√𝑥 sin(𝑥)= .2 
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Topic 9. Applications: frequency response 

Solutions 
9.1. (a) Solution: Characteristic polynomial: 𝑃(𝑟) = 𝑟2 + 𝑟 + 7: 𝑃(𝜔𝑖) = 7 − 𝜔2 + 𝑖𝜔. 
Particular solution (from sinusoidal response formula): 

𝐹0𝑥𝑝 = |𝑃 (𝑖𝜔)| cos(𝜔𝑡 − 𝜙(𝜔)), where 𝜙(𝜔) = Arg(𝑃 (𝑖𝜔)). 

This input amplitude is 𝐹0 and the output amplitude is 𝐹0/|𝑃 (𝑖𝜔)|, so the gain is 

1 1𝑔(𝜔) = |𝑝(𝑖𝜔)| = √(7 − 𝜔2)2 + 𝜔2 
. 

For graphing we analyze the term under the square root: call it ℎ(𝜔) = (7 − 𝜔2)2 + 𝜔2. 
Critical points: ℎ′(𝜔) = −4𝜔(7 − 𝜔2) + 2𝜔 = 0 ⇒ 𝜔 = 0 or 𝜔 = √13/2. 
Evaluate at the critical points: 𝑔(0) = 1/7, 𝑔(√13/2) ≈ 0.385 

Find regions of increase and decrease by checking values of ℎ′(𝜔): 
On [0, √13/2]: ℎ′(𝜔) < 0 ⇒ ℎ(𝜔) is decreasing, so 𝑔(𝜔) is increasing. 
On [√13/2, ∞]: ℎ′(𝜔) > 0 ⇒ ℎ(𝜔) is increasing 𝑔(𝜔) is decreasing. 
The graph is given below. This system has a (practical) resonant frequency = 𝜔𝑟 = √13/2. 
(b) Solution: Characteristic polynomial: 𝑃(𝑟) = 𝑟2 + 8𝑟 + 7: 𝑃 (𝜔𝑖) = 7 − 𝜔2 + 𝑖8𝜔. 
Gain (similar to Part (a)): 𝑔(𝜔) = 1/|𝑝(𝑖𝜔)| = 1/√(7 − 𝜔2)2 + 64𝜔2. 
For graphing we analyze the term under the square root: ℎ(𝜔) = (7 − 𝜔2)2 + 64𝜔2. 
Critical points: ℎ′(𝜔) = −4𝜔(7 − 𝜔2) + 128𝜔 = 0 ⇒ 𝜔 = 0. 
Since there are no positive critical points the graph is strictly decreasing. 
Graph below. 

𝜔 

𝑔 

1 2 3 4 

0.1 

0.2 

0.3 

0.4 

𝜔𝑟 

𝜔𝑟 = √13/2 

𝜔 

𝑔 

1 2 3 4 

0.1 

0.2 

0.3 

0.4 

Graphs for Problems 1a and 1b. 

9.2. Solution: See solution for Topic 8 Problem 3c 

9.3. (a) Solution: The second equation gives 𝑥1 = 𝑥2
″ + 𝑥2. 

Now, substitute this into the left side of the first equation. 

𝑥(4)𝑥″
1 + 2𝑥1 − 𝑥2 = (𝑥2

″ + 𝑥2)″ + 2(𝑥″
2 + 𝑥2) − 𝑥2 = 2 + 3𝑥2

″ + 𝑥2. 
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𝑥(4)So the equation for 𝑥2 is 2 + 3𝑥″
2 + 𝑥2 = 0. 

(b) Solution: This is a linear, constant coefficient, homogeneous DE. 
The characteristic equation is 𝑟4 + 3𝑟2 + 1 = 0. This is a quartic, which is usually hard to 
solve. Happily, in this case it is a quadratic in 𝑟2. So, 

−3 ± 
√

5𝑟2 = 2 

Both of these are real and negative. They are just some decimals, let’s call them −𝑎2 and
−𝑏2. So the characteristic roots are 𝑟 = ±𝑎 𝑖; ±𝑏 𝑖. Using these roots, we find the general 
solution to the DE is 

𝑥2(𝑡) = 𝑐1 cos(𝑎𝑡) + 𝑐2 sin(𝑎𝑡) + 𝑐3 cos(𝑏𝑡) + 𝑐4 sin(𝑏𝑡). 

Using a calculator, we find 𝑎 ≈ 0.618034; 𝑏 ≈ 1.618034 
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Topic 10. Direction fields, integral curves, existence of so-
lutions 

Solutions 
10.1. (a) Solution: The isocline for slope 𝑚 is −𝑦/𝑥 = 𝑚, i.e., 𝑦 = −𝑚𝑥. These are 
lines of slope −𝑚 through the origin. 
Note: it is a little confusing because there are two slopes discussed. The isocline for slope 
𝑚 is some curve and each slope field element drawn on it has slope 𝑚. In this case, 
coincidentally, the isoclines are themselves lines, so we can also talk of the slope of these 
lines. 
The figure shows isoclines with 𝑚 = ±1, ±2, 100. (𝑚 = 100 looks like 𝑚 = ∞. It also shows 
sketches of a number of integral curves. 

This equation is separable. The exact solution is 𝑦 = 𝐶/𝑥. 
(b) Solution: The isoclines for slope 𝑚 are the lines 2𝑥 + 𝑦 = 𝑚. These are lines with 
slope -2 and 𝑦-intercept 𝑚. The figure shows isoclines for 𝑚 = −6, −4, −2, 0, 2, 4. It also 
shows a few solutions. Note the solution that is also an isocline is shown in pink. 
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Because these lines all have slope -2, the isocline for slope -2 is also a solution. That is, 
𝑦 = −2𝑥 − 2 is a solution. It is easy to show this by substituting 𝑦 = −2𝑥 − 2 into the DE. 
(c) Solution: The isoclines for slope 𝑚 are the circles 𝑥2 + 𝑦2 = 1 + 𝑚. These are circles 
centered at the origin. Since 1 + 𝑚 must be positive there are isoclines for 𝑚 ≥ −1. 

1(d) Solution: The isocline for slope 𝑚 is = 𝑚. For 𝑚 ≠ 0 this is equivalent to𝑥 + 𝑦 
𝑥 + 𝑦 = 1/𝑚. Each isocline is a line slope -1. Several are shown. Several curves that follow 
the direction field are also shown. 
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No other integral curve will cross the solution 𝑦 = −𝑥 − 1. The existence and unique-
𝜕𝑓 ness theorem says that integral curves can’t cross in any region where 𝑓(𝑥, 𝑦) and 𝜕𝑦 

are 

continuous. 

10.2. (a) Solution: The isoclines have equation −𝑦/(𝑥2 + 𝑦2) = 𝑚. 
The nullcline is the line 𝑦 = 0. 
If 𝑚 ≠ 0, a little algebraic manipulation (completing the square) gives 

𝑥2 + 𝑦2 = −𝑦/𝑚 ⇔ 𝑥2 + 𝑦2 + 𝑦/𝑚 = 0 

⇔ 𝑥2 + 𝑦2 + 𝑦/𝑚 + (1/2𝑚)2 = (1/2𝑚)2 

⇔ 𝑥2 + (𝑦 + 1/2𝑚)2 = (1/2𝑚)2. 

This is clearly the equation of a circle centered on the 𝑦-axis and going through the origin. 

𝑦(0) = 1: In the first quadrant 𝑦′ < 0. Since 𝑦(𝑥) ≡ 0 is a solution, the existence and 
uniqueness theorem says that the integral curve cannot cross the 𝑥-axis for 𝑥 > 0. (The 
theorem fails at the origin, but that is not a problem for 𝑥 > 0.) Thus, starting at (0, 1), 



TOPIC 10. DIRECTION FIELDS, INTEGRAL CURVES, EXISTENCE OF SOLUTIONS20 

the integral curve has negative slope and goes into the first quadrant and cannot cross the
𝑥-axis, i.e., must stay positive. 
(b) Solution: As in Part (a), the nullcline is the 𝑥-axis. We can easily see that, 𝑦′ < 0 
when 𝑦 > 0 and 𝑦′ > 0 when 𝑦 < 0. Thus integral curves above the 𝑥-axis slope down and 
those below it slope up. 

The sketch is done with the computer, so the integral curves are accurate. A hand sketch 
would show qualitatively that the curves all go asymptotically to the 𝑥-axis. 

10.3. Solution: The existence and uniqueness theorem requires the equation in standard 
form. 

𝑦′ + 
𝑏(𝑥) 𝑐(𝑥) 
𝑎(𝑥)𝑦 = 𝑎(𝑥) . 

For this equation, it says that if 𝑏(𝑥)/𝑎(𝑥) and 𝑐(𝑥)/𝑎(𝑥) are continuous near 𝑥0, then there 
is a unique solution. Typically, this will be when 𝑎, 𝑏, 𝑐 are continuous and 𝑎(𝑥0) ≠ 0. 
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Topic 11. Numerical methods for first-order ODEs 

Solutions 
11.1. (a) Solution: We organize the computation in a table. 

𝑛 𝑥𝑛 𝑦𝑛 𝑚 = 𝑓(𝑥𝑛, 𝑦𝑛) 𝑚ℎ
0 0 1.0 −1.0 −0.1
1 0.1 0.9 −0.8 −0.08
2 0.2 0.82 −0.62 −0.062
3 0.3 0.758 

So, 𝑦(0.1) ≈ 0.9, 𝑦(0.2) ≈ 0.82, 𝑦(0.3) ≈ 0.758. 
Taking the second derivation: 𝑦″ = 1−𝑦′ = 1−𝑥+𝑦. Since this is positive in the region near 
(0, 1), the integral curve is concave up. Therefore, Euler’s method gives an underestimate 
for 𝑦(0.3). 
(You could see the concavity graphically by drawing isoclines.) 

(b) Solution: We only have to take one step. Following the Topic 11 notes: 
𝑘1 = 𝑓(𝑥0, 𝑦0) = 𝑓(0, 1) = −1. So, 𝑥𝑎 = 𝑥0 + ℎ = 0.1, 𝑦𝑎 = 𝑦0 + 𝑘1ℎ = 0.9, 
𝑘2 = 𝑓(𝑥𝑎, 𝑦𝑎) = 𝑓(0.1, 0.9) = −0.8. 

𝑘1 + 𝑘2𝑚 = = −0.9.2 
Take step: 𝑥1 = 𝑥0 + ℎ = 0.1, 𝑦1 = 𝑦0 + 𝑚ℎ = 0.91. 
In Part (a) we decided that the Euler estimate was too low. This method increased the 
estimate from 0.9 to 0.91. So RK2 did correct it in the right direction. 
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Topic 12. Autonomous DEs and bifurcation diagrams 

Solutions 
12.1. (a) Solution: 1. Critical points: 𝑥′ = 𝑥2 + 2𝑥 = 0, so 𝑥 = 0, −2. 
2. Checking signs for 𝑥′ : 
when 𝑥 > 0, 𝑥′ > 0; 
when −2 < 𝑥 < 0, 𝑥′ < 0; 
when 𝑥 < −2; 𝑥′ > 0. 
This gives the following phase line and sketch of solutions. 
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+

stable

unstable

Phaseline
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x

+

−
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(b) Solution: 1. Critical points: 𝑥′ = −(𝑥 − 1)2 = 0, so 𝑥 = 1. 
2. Checking signs for 𝑥′ : 
when 𝑥 > 1, 𝑥′ < 0; 
when 𝑥 < 1; 𝑥′ < 0. 
(So 𝑥 = 1 is a semistable critical point.) 

This gives the following phase line and sketch of solutions. 
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(c) Solution: 1. Critical points: 𝑥′ = 2𝑥 − 𝑥2 = 0, so 𝑥 = 0, 2. 
2. Checking signs for 𝑥′ : 
when 𝑥 > 2, 𝑥′ < 0; 
when 0 < 𝑥 < 2; 𝑥′ > 0. when 𝑥 < 0, 𝑥′ < 0. 
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This gives the following phase line and sketch of solutions. 
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(d) Solution: 1. Critical points: 𝑥′ = (2 − 𝑥)3 = 0, so 𝑥 = 2. 
2. Checking signs for 𝑥′ : 
when 𝑥 > 2, 𝑥′ < 0; 
when 𝑥 < 2, 𝑥′ > 0. 
This gives the following phase line and sketch of solutions. 
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12.2. (a) Solution: Critical points: 𝑦′ = 𝑦(𝑦 − 𝑎 − 1)(𝑦 − 2𝑎) = 0 ⇒ 𝑦 = 0, 𝑦 = 
𝑎 + 1, 𝑦 = 2𝑎. 

a

y

y = a+ 1

y = 0

y = 2a

−1 1
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The three lines showing the critical points divide the 𝑎𝑦-plane into 6 regions. We mark the 
regions pluses and minuses to indicate where 𝑦′ is positive or negative. We then translate 
this into a color coded bifurcation diagram. (We also label the various branches as stable 
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or unstable.) 

(b) Solution: Sustainable means a positive, stable critical point. So, this system is 
sustainable for 𝑎 > 0. 
(c) Solution: Bifurcation points at 𝑎 = 0, 𝑎 = 1, 𝑎 = −1. 
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Topic 13. Linear algebra: matrices, vector spaces, linearity 

Solutions 
13.1. (a) Solution: There are many possible choices, e.g., (1/

√
2, 1/

√
2), (3/5, 4/5),

(1/2, 1/2, 1/2, 1/2). 
(b) Solution: Again we have many choices. 

1 1 1
⎡ ⎤ ⎡ ⎤ ⎡ ⎤−1 −2 2⎢ ⎥ ⎢ ⎥ ⎢ ⎥ etc.⎢ 0 ⎥ ⎢ 0 ⎥ ⎢ 3 ⎥ 
⎣ 0 ⎦ ⎣ 1 ⎦ ⎣−6⎦ 

(c) Solution: This is important. To pick out a column, you use a column vector consisting 
of all 0’s and one 1. 

0
⎡ ⎤0 v = ⎢ ⎥⎢1⎥ 
⎣0⎦ 

(d) Solution: This is similar to Part (c): We need the row vector w = [0 0 1]. 

13.2. (a) Solution: You have to check the set is closed under scaling and addition. This 
set is a vector space. Closure under scaling and addition is just our old friend ‘superposition 
of homogeneous solutions’. 
(b) Solution: Not a vector space because not closed under either scaling or addition. 
For example, the entries of (1, 0, 0) sum to 1, but the entries of (3, 0, 0) do not. 
(c) Solution: Is a vector space. It is easy to check that if 𝑓(0) = 𝑓(𝜋) = 0 and
𝑔(0) = 𝑔(𝜋) = 0 the 𝑥(𝑡) = 𝑐1𝑓(𝑡) + 𝑐2𝑔(𝑡) satisfies the same properties. 
(d) Solution: Is a vector space. Practically by definition, the set of all linear combinations 
is closed under scaling and addition. 

13.3. (a) Solution: The system is in balance, i.e., the volume of fluid in each compart-
ment stays constant. The system is 

𝑥′ = −4 𝑥 + 3 
𝑦 + 1 ⋅ 3 = −0.4𝑥 + 0.6𝑦 + 3 𝑉1 𝑉2 

= 4 
𝑥 𝑦′ − 6 

𝑦 + 2 ⋅ 2 = 0.4𝑥 − 1.2𝑦 + 4 𝑉1 𝑉2 

[𝑥
𝑦′

′
] = [−0.4 0.6

0.4 −1.2] [𝑥
𝑦] + [3

4] or x ′ = 𝐴x + K. 

(b) Solution: The problem says to try a constant solution x = C. Substituting in the 
DE gives 

1 
0.24 

[−1.2 −0.6C = −𝐴−1K = − 
1 

−0.4 −0.4] [3
4] = 0.24 

[2.8
6 ] . 
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Topic 14. Linear algebra: row reduction and subspaces 

Solutions 
1 0 −1 

14.1. Solution: (a) ⎡⎢1 0 −1⎤⎥. All columns are multiples of the first implies rank 

⎣1 0 −1⎦ 
= 1. 
(b) [2]. A 1x1 (nonzero) matrix has rank 1. 

(c) [1
2 4

4]. Two independent columns implies rank = 2. 

14.2. (a) Solution: (i) No: Pivots are not in descending rows, i.e., first pivot is in Row 
2 and second is in Row 1. 
(ii) Yes: Pivot columns are all 0’s except for one 1. Pivots occur in descending rows. 
(iii) Yes: same reason. 
(iv) No: There is a zero row (Row 2) followed by a pivot row (Row 3). 
(v) Yes: Simple, but satisfies the definition. 
(b) Solution: (i) [1]
(ii) [1 1] 

(iii) Subtract Row 1 from Row 2: [1
1 1

1] ∼ [1
0 0

1] 

(iv) 

−2 1 0 Multiply 𝑅1 by −1/2 1 −1
2 0 Subtract 𝑅2 = 𝑅1 from 𝑅2 1 −1

2 0
⎡ ⎤ ⎡ ⎤ ⎡ −3

2
⎤⎢ 1 −2 1 ⎥ −−−−−−−−→ ⎢1 −2 1 ⎥ −−−−−−−−→ ⎢0 1 ⎥

⎣ 0 1 −2⎦ ⎣0 1 −2⎦ ⎣0 1 −2⎦ 

Multiply 𝑅2 by −2/3 1 −2
1 0 Subtract 𝑅2 from 𝑅3 1 −2

1 0 Multiply 𝑅3 by −3/4 1 −2
1 0

⎡ −2⎤ ⎡ −2⎤ ⎡ −2⎤−−−−−−−−→ ⎢0 1 3⎥ −−−−−−−−→ ⎢0 1 3⎥ −−−−−−−−→ ⎢0 1 3⎥
⎣0 1 −2⎦ ⎣0 0 −3

4⎦ ⎣0 0 1 ⎦ 

Add 2/3 × 𝑅3 to 𝑅2 1 −2
1 0 Add 1/2 × 𝑅2 to 𝑅1 1 0 0

−−−−−−−−→ ⎡⎢0 1 0⎤⎥ −−−−−−−−→ ⎡⎢0 1 0⎤⎥ . 
⎣0 0 1⎦ ⎣0 0 1⎦ 

14.3. (a) Solution: We have to solve the equation 

𝑥1 01 1 1 2 ⎡ ⎤ ⎡ ⎤𝑥2 0𝑥1 v1 + 𝑥2 v2 + 𝑥3 v3 + 𝑥4 v4 = 0 ⇔ ⎢⎡0 1 1 3⎥⎤ ⎢ ⎥ = ⎢ ⎥ .⎢𝑥3⎥ ⎢0⎥⎣0 0 1 4⎦ ⎣𝑥4⎦ ⎣0⎦ 

That is, we need to find a non-zero vector in the null space of the matrix. (Note, because 
there are more columns than rows, we know in advance that there will be at least one free 
column.) We do this by row reduction: 

𝑅2 = 𝑅2 − 𝑅31 1 1 2 𝑅1 = 𝑅1 − 𝑅3 1 1 0 −2 𝑅1 = 𝑅1 − 𝑅2 1 0 0 −1
⎡ ⎤ ⎤ ⎤⎢0 1 1 3⎥ −−−−−−−−→ ⎢⎡0 1 0 −1⎥ −−−−−−−−→ ⎢⎡0 1 0 −1⎥
⎣0 0 1 4⎦ ⎣0 0 1 4 ⎦ ⎣0 0 1 4 ⎦ 
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Setting the free variable 𝑥4 = 1 we get the following null vector [1 1 −4 1]𝑇 . Thus the 
equation called for is 

1 01 1 1 2 ⎡ ⎤ ⎡ ⎤⎡ ⎤ 1 0
⎢0 1 1 3⎥ ⎢ ⎥ = ⎢ ⎥ .⎢−4⎥ ⎢0⎥⎣0 0 1 4⎦ ⎣ 1 ⎦ ⎣0⎦ 

(b) Solution: (i) Row reduction for 𝐴: 

0 1 2 3 Swap 𝑅1 and 𝑅2 1 2 3 4 𝑅3 = 𝑅3 − 2𝑅1 1 2 3 4
⎡ ⎤ ⎤ ⎤⎢1 2 3 4⎥ −−−−−−−−→ ⎢⎡0 1 2 3⎥ −−−−−−−−→ ⎢⎡0 1 2 3 ⎥
⎣2 3 4 5⎦ ⎣2 3 4 5⎦ ⎣0 −1 −2 −3⎦ 

𝑅3 = 𝑅3 + 𝑅2 1 2 3 4 𝑅1 = 𝑅1 − 2𝑅2 1 0 −1 −2
⎤ ⎤−−−−−−−−→ ⎡⎢0 1 2 3⎥ −−−−−−−−→ ⎡⎢0 1 2 3 ⎥

⎣0 0 0 0⎦ ⎣0 0 0 0 ⎦ 

Stop and observe: The third column is twice the second minus the first. That’s true in the 
original matrix as well! The fourth column is the 3 times the second minus twice the first. 
That’s also true in the original matrix! 
Setting one free variable to 1 and the other to 0 we get two basis vectors for the null space: 

1 2
⎡ ⎤ ⎡ ⎤−2 −3𝑥3 = 1, 𝑥4 = 0 → ⎢ ⎥ , 𝑥3 = 0, 𝑥4 = 1 → ⎢ ⎥ ,⎢ 1 ⎥ ⎢ 0 ⎥ 
⎣ 0 ⎦ ⎣ 1 ⎦ 

For 𝐵: 

0 1 2 1 2 3 𝑅3 = 𝑅3 − 2𝑅1 1 2 3 𝑅3 = 𝑅3 + 2𝑅2 1 2 3
⎡ ⎤ Swap 𝑅1 and 𝑅2 ⎡ ⎤ 𝑅4 = 𝑅4 − 3𝑅1 ⎡ ⎤ 𝑅4 = 𝑅4 + 2𝑅2 ⎡ ⎤1 2 3 0 1 2 0 1 2 0 1 2⎢ ⎥ −−−−−−−−→ ⎢ ⎥ −−−−−−−−→ ⎢ ⎥ −−−−−−−−→ ⎢ ⎥⎢2 3 4⎥ ⎢2 3 4⎥ ⎢0 −1 −2⎥ ⎢0 0 0⎥ 
⎣3 4 5⎦ ⎣3 4 5⎦ ⎣0 −2 −4⎦ ⎣0 0 0⎦ 

1 0 −1
𝑅1 = 𝑅1 − 2𝑅2 ⎡ ⎤0 1 2−−−−−−−−→ ⎢ ⎥⎢0 0 0 ⎥ 

⎣0 0 0 ⎦ 

The first two variables are pivotal and the third is free. Set the free variable equal to 1 and
1

⎡ ⎤solve for the pivot variables to find the basis vector ⎢−2⎥. (Any nonzero multiple of this 

⎣ 1 ⎦ 
vector is another basis for the null space.) 

0 1 2 3 1 
(ii) We need a particular solution to ⎡⎢1 2 3 4⎤⎥ x = ⎢⎡1⎤⎥. The systematic approach is 

⎣2 3 4 5⎦ ⎣1⎦ 

⎤to use the augmented matrix formed by the pivot columns of 𝐴 and ⎡⎢1
1
⎥, then solve using

⎣1⎦ 
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row reduction: 
0 1 11 𝑅3 = 𝑅3 − 2𝑅1 1 21 Swap 𝑅1 and 𝑅2 1 2

⎡ ⎤⎢1 2 1⎤⎥ −−−−−−−−→ ⎡⎢0 1 1⎤⎥ −−−−−−−−→ ⎡⎢0 1 1 ⎥
⎣2 3 1⎦ ⎣2 3 1⎦ ⎣0 −1 −1⎦ 

−1𝑅3 = 𝑅3 + 𝑅2 1 2 1 𝑅1 = 𝑅1 − 2𝑅2 1 0
⎤ ⎤−−−−−−−−→ ⎡⎢0 1 1⎥ −−−−−−−−→ ⎡⎢0 1 1 ⎥

⎣0 0 0⎦ ⎣0 0 0 ⎦ 

The pivot variables are 𝑥1 and 𝑥2. The last augmented matrix above shows the solution 
is 𝑥1 = −1, 𝑥2 = 1. Combining this with the free variables 𝑥3 = 0, 𝑥4 = 0, we have a

−1
⎡ ⎤1particular solution 𝑥𝑝 = ⎢ ⎥.⎢ 0 ⎥ 
⎣ 0 ⎦ 

Thus the general solution is 

−1 1 2
⎡ ⎤ ⎡ ⎤ ⎡ ⎤1 −2 −3 x = xp + xh = ⎢ ⎥ + 𝑐1 ⎢ ⎥ + 𝑐2 ⎢ ⎥ .⎢ 0 ⎥ ⎢ 1 ⎥ ⎢ 0 ⎥ 
⎣ 0 ⎦ ⎣ 0 ⎦ ⎣ 1 ⎦ 

Note: in this case, you might have just noticed that the Column 2 minus Column 1 equals
1

⎡ ⎤⎢1⎥. This would have given you the solution without further computation.
⎣1⎦ 

0 1 2 1
⎡ ⎤ ⎡ ⎤1 2 3 1(iii) We need a particular solution to ⎢ ⎥ x = ⎢ ⎥. Again, the difference of the first⎢2 3 4⎥ ⎢1⎥ 
⎣3 4 5⎦ ⎣1⎦ 

two columns works; so the general solution is 

x = xp + xh = ⎢⎡
−1
1 ⎥⎤ + 𝑐 ⎢⎡−2

1 

⎥⎤ . 
⎣ 0 ⎦ ⎣ 1 ⎦ 

(Or using the systematic approach would have been a sure fire way to find the solution.) 

1
⎡ ⎤1(c) Solution: (i) This is easy to do directly: all such vectors are multiples of ⎢ ⎥, so⎢1⎥ 
⎣1⎦ 

that by itself forms a basis of this subspace. 
Since the basis has one element, the dimension of the subspace is 1. 

(ii) A matrix representation of this relation is [1 1 1 1] x = 0. This is already in 
reduced echelon form! The first variable is pivotal, the last three are free. We get a basis:

−1 −1 −1
⎡ ⎤ ⎡ ⎤ ⎡ ⎤1 0 0⎢ ⎥ , ⎢ ⎥ , ⎢ ⎥.⎢ 0 ⎥ ⎢ 1 ⎥ ⎢ 0 ⎥ 
⎣ 0 ⎦ ⎣ 0 ⎦ ⎣ 1 ⎦ 
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Since the basis has 3 elements, the subspace has dimension 3. 

(iii) Now there are two equations in four unknowns. We get the matrix equation 

𝑥1
1 0 0 𝑥2[1

1 0 1 1] ⎢
⎡
⎢𝑥3

⎥
⎤
⎥ 

= 0 

⎣𝑥4⎦ 

We use row reduction to get a basis for the null space: 

[1 1 0 
1
0] ∼ [1 1 0 

1
0] ∼ [1 0 1 

−1
1 ] . 1 0 1 0 −1 1 0 1 −1 

−1 −1
⎡ ⎤ ⎡ ⎤1 1The first two variables are pivotal and the last two are free. A basis is ⎢ ⎥ , ⎢ ⎥.⎢ 1 ⎥ ⎢ 0 ⎥ 
⎣ 0 ⎦ ⎣ 1 ⎦ 

Looking back at the original equations, this makes sense, doesn’t it? 

Since the basis has 2 elements, the subspace has dimension 2. 
(d) Solution: (i) We need the rank of the matrix to be 2. If 𝑐 ≠ 0 then no matter what 
𝑑 is there will be pivots in all three rows and the rank will be 3: so 𝑐 = 0. The rank will 
still be 3 unless the third row is a linear combination of the first two. Said differently, row 
reduction has to bring the last row to 0, so we must have 𝑑 = 2. 
(ii) If the null space is two dimensional, then there are 2 free columns. Since there are 4 
columns, this means there are 2 pivot columns. Part (i) essentially asked when there were 
exactly two pivot columns. Thus the answer here is the same as in Part (i) 
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Topic 15. Linear algebra: transpose, inverse, determinant 

Solutions 
−1𝑎 [1 𝑎 = [1 −𝑎 15.1. Solution: (a) det [1 

1] = 1; 1] 1 ].0 0 0 

1 𝑎 𝑏 
(b) det ⎢⎡0 1 𝑐⎥⎤ = 1 (by cross-hatch, or because the determinant of an upper-triangular

⎣0 0 1⎦ 
matrix is the product of the diagonal entries). We find the inverse using row reduction on 
an augmented matrix. We don’t show all the intermediate steps. The steps are: subtract
𝑐×row3 from row2; subtract 𝑏×row3 from row1; subtract 𝑎×row2 from row1 

𝑅2 = 𝑅2 − 𝑐 ⋅ 𝑅31 𝑎 𝑏 1 −𝑎 𝑎𝑐 − 𝑏 1 0 0 𝑅1 = 𝑅1 − 𝑏 ⋅ 𝑅3 1 𝑎 𝑏 1 0 −𝑏 𝑅1 = 𝑅1 − 𝑎 ⋅ 𝑅2 1 0 0
⎡ ⎤⎢0 1 𝑐 0 1 0⎥⎤ −−−−−−−−→ ⎡⎢0 1 0 0 1 −𝑐⎥⎤ −−−−−−−−→ ⎡⎢0 1 0 0 1 −𝑐 ⎥
⎣0 0 1 0 0 1⎦ ⎣0 0 1 0 0 1 ⎦ ⎣0 0 1 0 0 1 ⎦ 

1 −𝑎 𝑎𝑐 − 𝑏
⎤So the inverse is ⎢⎡0 1 −𝑐 ⎥. 

⎣0 0 1 ⎦ 

0 1 1 
(c) det ⎡⎢1 0 1⎥⎤ = 2 by crosshatch. So we expect a 2 in the denominator of the inverse. 

⎣1 1 0⎦ 

We find the inverse using row reduction on an augmented matrix. We don’t show all the 
intermediate steps. The steps are: swap row1 and row2; subtract row1 from row3; subtract 
row2 from row3; scale row3 by -1/2; subtract row3 from row2; subtract row3 from row1 

0 1 1 0 1 0 𝑅3 = 𝑅3 − 𝑅1 1 0 1 0 1 01 0 0 Swap 𝑅1 and 𝑅2 1 0 1
⎡ ⎤⎢1 0 1 0 1 0⎥⎤ −−−−−−−−→ ⎡⎢0 1 1 1 0 0⎥⎤ −−−−−−−−→ ⎡⎢0 1 1 1 0 0⎥
⎣1 1 0 0 0 1⎦ ⎣1 1 0 0 0 1⎦ ⎣0 1 −1 0 −1 1⎦ 

0 1 0
⎤ 

𝑅3 = − 2
1 ⋅ 𝑅3 1 0 1 0 1 0𝑅3 = 𝑅3 − 𝑅2 1 0 1 

⎤1 0 0⎥ −−−−−−−−→ ⎡⎢0 1 1 1 0 0 ⎥
1 1 −1

−−−−−−−−→ ⎡⎢0 1 1 

⎣0 0 −2 −1 −1 1⎦ ⎣0 0 1 2 2 2⎦ 
𝑅2 = 𝑅2 − 𝑅3
𝑅1 = 𝑅1 − 𝑅3 1 0 0
−−−−−−−−→ ⎡⎢0 1 0 

⎣0 0 1 

−1
⎡so the inverse is 1

2 ⎢
⎣ 

1
1 

−1 1 1
2 2 21 −1 1 ⎤

2 2 2 ⎥
1 1 −1
2 2 2⎦ 

1 1 
⎤−1 1 ⎥.

1 −1⎦ 
The original matrix was symmetric. Is it an accident that the inverse is also symmetric? 

1 0 0 0 1 0 0 0
⎡ ⎤ ⎡ 1 ⎤0 2 0 0 0 0 0(d) det ⎢ ⎥ = 1 ⋅ 2 ⋅ 3 ⋅ 4 = 24. The inverse is ⎢ 2 1 ⎥.⎢0 0 3 0⎥ ⎢0 0 0⎥ 
⎣0 0 0 4⎦ ⎣0 0 0

3 

4
1⎦ 
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15.2. (a) Solution: 

[cos 𝛼 − sin 𝛼 − sin 𝛽 𝑅(𝛼)𝑅(𝛽) = cos 𝛼 
] [cos 𝛽 

sin 𝛼 sin 𝛽 cos 𝛽 
] 

[cos 𝛼 cos 𝛽 − sin 𝛼 sin 𝛽 −(cos 𝛼 sin 𝛽 + sin 𝛼 cos 𝛽) = cos 𝛼 sin 𝛽 + sin 𝛼 cos 𝛽 cos 𝛼 cos 𝛽 − sin 𝛼 sin 𝛽 
] 

[cos(𝛼 + 𝛽) − sin(𝛼 + 𝛽) = sin(𝛼 + 𝛽) cos(𝛼 + 𝛽) 
] 

= 𝑅(𝛼 + 𝛽). 
Geometrically, 𝑅(𝜃) rotates vectors in the plane by 𝜃 radians counterclockwise. 

sin 𝜃 (b) Solution: det 𝑅(𝜃) = (cos 𝜃)2 + (sin 𝜃)2 = 1. 𝑅(𝜃)−1 = [ 
cos 𝜃 

cos 𝜃] = 𝑅(−𝜃).− sin 𝜃 
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Topic 16. Linear algebra: eigenvalues, diagonalization 

Solutions 
16.1. (a) Solution: (i) The eigenvalues of upper or lower triangular matrices are the 
diagonal entries: so for 𝐴 we get eigenvalues 1 and 2. 
Eigenvectors (vectors in Null(𝐴 − 𝜆𝐼)): 

1For 𝜆 = 1: 𝐴 − 𝜆𝐼 = [0 
1]; So [0

1] is an eigenvector, i.e. in Null(𝐴 − 𝜆𝐼). Any multiple 0 
is also an eigenvector. 

1For 𝜆 = 2: 𝐴 − 𝜆𝐼 = [−1 
0]. So [1

1] or any multiple is an eigenvector. 0 

For 𝐵, the eigenvalues are 3 and 4. 
0For 𝜆 = 3: 𝐵 − 𝜆𝐼 = [0 
1]; So [−1

1 
] is a basic eigenvector. 1 

0For 𝜆 = 4: 𝐵 − 𝜆𝐼 = [−1 
0]; So [1

0] is a basic eigenvector. 1 

(ii) 𝐴𝐴: Directly from the definition of eigenvalue/eigenvector we can see that the eigen-
values of 𝐴𝐴 are the squares of those of 𝐴 and the eigenvectors are those of 𝐴. For example, 
if 𝐴v = 𝜆v, then 

𝐴𝐴v = 𝐴(𝜆v) = 𝜆𝐴v = 𝜆 ⋅ 𝜆v = 𝜆2v. 
Thus 𝐴𝐴 has eigenvalues 1 and 4. 

Multiplying: 𝐴𝐵 = [4 4
2 8] 

4 − 𝜆 4Characteristic equation: ∣ ∣ = 𝜆2 − 12𝜆 + 24 = 02 8 − 𝜆 

Eigenvalues (roots): 6 ± 
√

12. 
(iii) If 𝐴x = 𝜆x, then (𝑐𝐴)x = 𝑐𝐴x = 𝑐𝜆x, so 𝑐𝜆 is an eigenvalue of 𝑐𝐴. We see that the 
eigenvalues of 𝑐𝐴 are exactly 𝑐 times the eigenvalues of 𝐴. 

1 4 − 𝜆 1(iv) 𝐴 + 𝐵 = [4 
6] has characteristic equation ∣ ∣ = 𝜆2 − 10𝜆 + 23 = 0. So the 1 1 6 − 𝜆 

eigenvalues of 𝐴 + 𝐵 are 5 ± 
√

2. 
We see that the eigenvalues of 𝐴 + 𝐵 are not just the sum of the eigenvalues of 𝐴 and 𝐵. 
(b) Solution: The characteristic polynomial of matrix 𝐴 is det(𝐴 − 𝜆𝐼). 
Remember: The determinant of a diagonal or triangular matrix is just the product of the 
diagonal elements. 

1 − 𝜆 𝑎 (i) ∣ ∣ = (1 − 𝜆)2.0 1 − 𝜆 

1 − 𝜆 𝑎 𝑏 
(ii) ∣ 0 1 − 𝜆 𝑐 ∣ = (1 − 𝜆)3.

0 0 1 − 𝜆 
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−𝜆 1 1 
(iii) ∣ 1 −𝜆 1 ∣ = (−𝜆)3 + 1 + 1 − (−𝜆) − (−𝜆) − (−𝜆) = −𝜆3 + 3𝜆 + 2.

1 1 −𝜆 

1 − 𝜆 0 0 0∣ ∣0 2 − 𝜆 0 0(iv) ∣ ∣ = (1 − 𝜆)(2 − 𝜆)(3 − 𝜆)(4 − 𝜆).
∣ 0 0 3 − 𝜆 0 ∣
∣ 0 0 0 4 − 𝜆∣ 

16.2. (a) Solution: (i) 𝐴 is upper triangular so its eigenvalues are 𝜆1 = 1, 𝜆2 = 3. 
Next, we find the corresponding basic eigenvectors (basis of Null(𝐴 − 𝜆𝐼)): 

𝜆1 = 1: 𝐴 − 𝜆1𝐼 = [0 
2], so we can take v1 = [1

0
2 

0]. 

2𝜆2 = 3: 𝐴 − 𝜆1𝐼 = [−2
0 0], so we can take v2 = [1

1]. 

1 0 −1 1 0 −1Thus, 𝑆 = [1
0 1], Λ = [1

0 3], 𝑆−1 = [1
0 1 

] ⇒ 𝐴 = 𝑆Λ𝑆−1 = [1
0 1] [1

0 3] [1
0 1 

] 

For 𝐵: Characteristic equation det [1 − 𝜆 1
3 3 − 𝜆] = 𝜆2 − 4𝜆 = 0. 

So the eigenvalues are 𝜆 = 0, 4. 
Basic eigenvectors (basis of Null(𝐵 − 𝜆𝐼)): 

1𝜆 = 0: 𝐴 − 𝜆𝐼 = [1
3 3]. Take v = [−1

1 ]. 

1𝜆 = 4: 𝐴 − 𝜆𝐼 = [−3
3 −1]. Take v = [1

3]. 

Thus, 𝑆 = [ 1 1
3], Λ = [0 0

4], 𝑆−1 = 1
4 [3 −1

1 ] ⇒ 𝐵 = 𝑆Λ𝑆−1
−1 0 1 

(ii) These follow directly from Part (i). 

= [1 1 0 −1𝐴3 = 𝑆Λ3𝑆−1 

1] [1 
27] [1 

1 
].0 0 0 

= [1 1 0 −1𝐴−1 = 𝑆Λ−1𝑆−1 

1] [1 
1/3] [1 

1 
].0 0 0 

(b) Solution: 𝐴 has rank 1 implies its null space has dimension 9. Since the null space 
consists of all eigenvectors with eigenvalue 0, 𝜆 = 0 is an eigenvalue repeated 9 times. 
This leaves one more eigenvalue to find. Since the 

tr𝐴 = 5 = sum of the eigenvalues 

the last eigenvalue is 𝜆 = 5. 
(c) Solution: Characteristic equation: det(𝐴 − 𝜆𝐼) = 𝜆2 + 4𝜆 + 4 = 0 ⇒ 𝜆 = −3, −1. 
Basic eigenvectors (basis of Null(𝐴 − 𝜆𝐼)): 
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1𝜆 = −3: 𝐴 − 𝜆𝐼 = [1
1 1] ⇒ take v = [−1

1 ]. 

𝜆 = −1: 𝐴 − 𝜆𝐼 = [−1
1 −1

1 ] ⇒ take v = [1
1]. 

Since we want the columns of 𝑆 to be unit vectors we normalize the eigenvectors 

= −3: v1 = [ 
1/

√
2 = −1: v2 = [1/

√
2𝜆1 𝜆2−1/

√
2] 1/

√
2] 

So, 𝑆 = [ 1/
√

2 1/
√

2 Λ = [−3 0 = [1/
√

2 −1/
√

2𝑆−1 = 𝑆𝑇 

−1/
√

2 1/
√

2], 0 −1], 1/
√

2 1/
√

2 
] 

Finally 𝐴 = 𝑆Λ𝑆−1. 

16.3. (a) Solution: (i) 𝐴 = [−1 1
1 −1]. 

(ii) We could do this by inspection but let’s do it computationally. 
Characteristic equation: 𝜆2 + 2𝜆 = 0 ⇒ 𝜆 = 0, −2. 
Basic eigenvectors (basis of Null(𝐴 − 𝜆𝐼)): 

1𝜆1 = 0: 𝐴 − 𝜆1𝐼 = [−1 
−1]. We can take v1 = [1

1].1 

𝜆2 = −2: 𝐴 − 𝜆1𝐼 = [1 
1]. We can take v2 = [ 

1
1 

1 
−1]. 

(iii) Using the eigenvalues and eigenvectors, the solution to the system of DEs is 

u(𝑡) = 𝑐1 [
1
1] + 𝑐2𝑒−2𝑡 [−1

1 ] 

The initial conditions conditions are 

u(0) = 𝑐1 [1
1] + 𝑐2 [−1

1 ] = [30 ⇒ 𝑐1 = 20, 𝑐2 = 10.10] 

𝑤(1)] = [20 + 10𝑒−2 

We conclude [𝑣(1) 
20 − 10𝑒−2] 

(iv) Looking at the solution to the system, we see that as 𝑡 goes to infinity both 𝑣 and 𝑤 
go to 20. 

1(b) Solution: To give it a name, call the coefficient matrix 𝐵 = [ 0 
0]<−1 

We start by finding the general solution to this system using the method of eigenvalues and 
eigenvectors. 
Characteristic equation: det(𝐵 − 𝜆𝐼) = 𝜆2 + 1 = 0. So, 𝜆 = ±𝑖. 
Basic eigenvectors (basis of Null(𝐵 − 𝜆𝐼)): 

1𝜆 = 𝑖: 𝐵 − 𝜆𝑖 = [−𝑖 
−𝑖]. We can take v = [1

−1 𝑖]. 
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𝑖] = [ 
cos(𝑡) + 𝑖 sin(𝑡)Complex modal solution: z(𝑡) = 𝑒𝑖𝑡 [1 

− sin(𝑡) + 𝑖 cos(𝑡)] 

Two real-valued solutions (real and imaginary parts of z): 

x1(𝑡) = [ 
cos(𝑡) x2(𝑡) = [sin(𝑡)

− sin(𝑡)] cos(𝑡)] . 

General solution: 

x(𝑡) = 𝑐1x1(𝑡) + 𝑐2x2(𝑡) = [ 
𝑐1 cos(𝑡) + 𝑐2 sin(𝑡)

−𝑐1 sin(𝑡) + 𝑐2 cos(𝑡)] . 

x(𝑡) is on the unit circle if |x(𝑡)| = 1. So we compute 

|x(𝑡)| = (𝑐1 cos(𝑡) + 𝑐2 sin(𝑡))2 + (−𝑐1 sin(𝑡) + 𝑐2 cos(𝑡))2 = 𝑐1
2 + 𝑐2

2 

This shows that the solutions that trace out the unit circle are those with 𝑐1
2 + 𝑐2

2 = 1. 
Note that the simplest of these is x1(𝑡), which traces the unit circle in a clockwise direction 
starting at (1, 0). 
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Topic 17. Matrix methods of solving systems of DEs 

Solutions 

17.1. (a) Solution: If v is an eigenvector of 𝐴 with eigenvalue 𝜆, then [ 
𝐴
0 𝐵

0 ] [v] = 0 

[𝐴v] = [𝜆v]. This shows that [v] is an eigenvector of 𝐶 with eigenvalue 𝜆.0 0 0 

Likewise, if w is an eigenvector of 𝐵 with eigenvalue 𝜇, then [ 
0 ] is an eigenvector of 𝐶 w 

with eigenvalue 𝜇. 
Conclusion: The eigenvalues of 𝐶 are 𝜆1, … , 𝜆𝑚, 𝜇1 … , 𝜇𝑛. 
(b) Solution: We take a general eigenvector and see what properties it must have. 

Suppose [w
v] is an eigenvector of 𝐶 with eigenvector 𝜆. Then, [ 𝐴

0 𝐼
0 

] [v] = [ 
w ] = w 𝐴v 

𝜆 [v]. w 

This shows that w = 𝜆v and 𝐴v = 𝜆w. Substituting the first expression for w in the 
second equation gives 

𝐴v = 𝜆w = 𝜆2v. 
This shows that v is an eigenvector of 𝐴 with eigenvector 𝜆2. 
Conclusion: the eigenvalues of 𝐶 are 𝜆 = ±√𝜇, where 𝜇 is an eigenvalue of 𝐴. If v is 

veigenvector of 𝐴 with eigenvalue 𝜇, then [ ] and [ ] are eigenvectors of 𝐶 with√v
𝜇v −√𝜇v 

eigenvalues 
√𝜇 and −√𝜇 are respectively. 

17.2. (a) Solution: The sum of the 𝑥 coefficients is 5, as is the sum of the 𝑦 coefficeints. 
This shows that the total number of rabbits grows according to (𝑥 + 𝑦)′ = 5(𝑥 + 𝑦). 
(b) Solution: The rate that rabbits jump from Jones’ to McGregor is given by the 
coefficient 2 of 2𝑥 in the equation for 𝑦′ . Likewise, the rate in the opposite direction is 
given by the coefficient 1 of 𝑦. So the rate from Jones’ to McGregor is twice that in the 
other direction. 

1(c) Solution: The matrix of eigenvectors is 𝑆 = [1 1 So, 𝑆−1 = 3 [1 1 The2 −1]. 2 −1]. 

0diagonal matrix of eigenvalues is Λ = [5 
2].0 

= 1Diagonalization: 𝐴 = 𝑆Λ𝑆−1 
3 [1

2 −1
1 ] [5

0 2
0] [1

2 −1
1 ]. 

Decoupling: Call the decoupled coordinates u = [𝑢
𝑣]. The decoupled coordinates are 

1 1 𝑢 = 𝑥/3 + 𝑦/3 u = 𝑆−1x ⇔ [𝑢
𝑣] = 3 [1

2 −1] [𝑥
𝑦] ⇔ 𝑣 = 2𝑥/3 − 𝑦/3. 

The decoupled equations are u ′ = Λu ⇔ 𝑢′ = 5𝑢; 𝑣′ = 2𝑣. 
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17.3. (a) Solution: First we have to find eigenvalues and eigenvectors. 
Characteristic equation: |𝐴 − 𝜆𝐼| = 𝜆2 − 1 = 0. So, 𝜆 = 1, −1. 
Eigenvectors (basis of Null(𝐴 − 𝜆𝐼)): 
Note: for a 2 × 2 matrix we don’t need to use row reduction to find a basis of the null space 
of 𝐴 − 𝜆𝐼 . 

4𝜆 = 1: (𝐴 − 𝜆𝐼) = [−4 
2]. Take v = [1

1].−2 

4𝜆 = −1: (𝐴 − 𝜆𝐼) = [−2 
4]. Take v = [2

1].−2 

The modal solutions (also called normal modes) are 

x1(𝑡) = 𝑒𝑡 [1
1] and x2(𝑡) = 𝑒−𝑡 [1

2] . 

The general solution to the system of DEs is x(𝑡) = 𝑐1x1(𝑡) + 𝑐2x2(𝑡). 

(b) Solution: 𝐵 − 𝜆𝐼 = [4 − 𝜆 −3
8 −6 − 𝜆] 

Characteristic equation: |𝐵 − 𝜆𝐼| = 𝜆2 + 2𝜆 = 0. So, 𝜆 = 0, −2. 
Eigenvectors (basis of Null(𝐵 − 𝜆𝐼)): 

−3𝜆 = 0: (𝐵 − 𝜆𝐼) = [4 
−6]. Take v = [3

4].8 

−3𝜆 = −2: (𝐵 − 𝜆𝐼) = [6 
−4]. Take v = [2

1].8 

The modal solutions (also called normal modes) are 

x1(𝑡) = [3
4] and x2(𝑡) = 𝑒−2𝑡 [2

1] . 

The general solution to the system of DEs is x(𝑡) = 𝑐1x1(𝑡) + 𝑐2x2(𝑡). 
1 − 𝜆 −1 0 

(c) Solution: 𝐶 − 𝜆𝐼 = ⎢⎡ 1 2 − 𝜆 1 ⎥⎤ 

⎣ −2 1 −1 − 𝜆⎦ 

We computed the determinant using Laplace expansion along the top row: 
Characteristic equation: |𝐶 − 𝜆𝐼| = (𝜆 − 1)(𝜆 − 2)(𝜆 + 1) = 0. So, 𝜆 = 1, 2, −1. 
Basic eigenvectors (basis of Null(𝐶 − 𝜆𝐼)): 

0 −1 0 1 0 1
𝜆 = 1: (𝐶 − 𝜆𝐼) = ⎢⎡ 1 1 1 ⎥⎤ . We put this into RREF 𝑅 = ⎢⎡0 1 0⎥⎤ . 

⎣−2 1 −2⎦ ⎣0 0 0⎦ 

This has 1 free variable. So the eigenspace (null space of 𝐴 − 𝜆𝐼) has one basis vector. We 

⎤take v = ⎡⎢
−1
0 ⎥. 

⎣ 1 ⎦ 
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−1 −1 0 1 0 1
𝜆 = 2: (𝐶 − 𝜆𝐼) = ⎡⎢ 1 0 1 ⎤⎥. We put this into RREF 𝑅 = ⎡⎢0 1 −1⎤⎥ . 

⎣−2 1 −3⎦ ⎣0 0 0 ⎦ 

This has 1 free variable. So the eigenspace has one basis vector. We take v = ⎡
−1
1 ⎤ .⎢ ⎥

⎣ 1 ⎦ 

2 −1 0 1 0 1/7
𝜆 = −1: (𝐶 − 𝜆𝐼) = ⎢⎡ 1 3 1⎥⎤ . We put this into RREF 𝑅 = ⎢⎡0 1 2/7⎥⎤ . 

⎣−2 1 0⎦ ⎣0 0 0 ⎦ 

−1 
This has 1 free variable. So the eigenspace has one basis vector. We take v = ⎡⎢−2⎥⎤ . 

⎣ 7 ⎦ 

The modal solutions (also called normal modes) are 

−1 −1 −1 
x1(𝑡) = 𝑒𝑡 ⎡⎢ 0 ⎤⎥ , x2(𝑡) = 𝑒2𝑡 ⎢⎡ 1 ⎤⎥ , x3(𝑡) = 𝑒−𝑡 ⎡⎢−2⎤⎥ . 

⎣ 1 ⎦ ⎣ 1 ⎦ ⎣ 7 ⎦ 

The general solution to the system of DEs is x(𝑡) = 𝑐1x1(𝑡) + 𝑐2x2(𝑡) + 𝑐3x3(𝑡). 

17.4. (Complex eigenvalues) Solution: Call the coefficient matrix 𝐴. 𝐴 − 𝜆𝐼 = 

[1 − 𝜆 −5
1 −1 − 𝜆]. 

Characteristic equation: |𝐴 − 𝜆𝐼| = 𝜆2 + 4 = 0. So, 𝜆 = ±2𝑖. 
Basic eigenvectors (basis of Null(𝐴 − 𝜆𝐼)): 
Note: for a 2 × 2 matrix we don’t need to use row reduction to find a basis of the null space 
of 𝐴 − 𝜆𝐼 . 

𝜆 = 2𝑖: 𝐴 − 𝜆𝐼 = [1 − 2𝑖 −5 5
1 −1 − 2𝑖]. Take v = [1 − 2𝑖] . 

For 𝜆 = −2𝑖, we could just take the complex conjugate of the above vector. BUT, we don’t 
need the second eigenvector. 
One complex solution: 

z(𝑡) = 𝑒2𝑖𝑡 [ 
5 5 5 cos(2𝑡) + 𝑖5 sin(2𝑡)

1 − 2𝑖] = (cos(2𝑡)+𝑖 sin(2𝑡)) [1 − 2𝑖] = [cos(2𝑡) + 2 sin(2𝑡) + 𝑖(sin(2𝑡) − 2 cos(2𝑡))] 

This gives two real-valued solutions 

5 cos(2𝑡)x1(𝑡) = Re(z) = [cos(2𝑡) + 2 sin(2𝑡)] 

5 sin(2𝑡)x2(𝑡) = Im(z) = [sin(2𝑡) − 2 cos(2𝑡)] 

The general real-valued solution is x(t) = 𝑐1x1(𝑡) + 𝑐2x2(𝑡). 
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17.5. (Complex eigenvalues) Solution: Call the coefficient matrix 𝐴. 𝐴 − 𝜆𝐼 = 

[3 − 𝜆 −4
3 − 𝜆]. 

Characteristic equation: |𝐴 − 𝜆𝐼| = 𝜆2 − 6𝜆 + 25 = 0. So, 𝜆 = 3 ± 4𝑖. 
Basic eigenvectors (basis of Null(𝐴 − 𝜆𝐼)): 

−4𝜆 = 3 + 4𝑖: 𝐴 − 𝜆𝐼 = [−4𝑖 
−4𝑖]. Take v = [−𝑖

1 ] . 4 

For 𝜆 = 3 − 4𝑖 we would just take the complex conjugate of the above vector. BUT, we 
don’t need to bother finding this. 
One complex solution: 

z(𝑡) = 𝑒(3+4𝑖)𝑡 [ 
1 

−𝑖] = 𝑒3𝑡 [cos(4𝑡) + 𝑖 sin(4𝑡)
−𝑖] = 𝑒3𝑡(cos(4𝑡) + 𝑖 sin(4𝑡)) [ 

1 
sin(4𝑡) − 𝑖 cos(4𝑡)] 

This gives two real-valued solutions 

x1(𝑡) = Re(z) = 𝑒3𝑡 [cos(4𝑡)
sin(4𝑡)] 

x2(𝑡) = Im(z) = 𝑒3𝑡 [ 
sin(4𝑡)

− cos(4𝑡)] 

The general real-valued solution is x(t) = 𝑐1x1(𝑡) + 𝑐2x2(𝑡). 



TOPIC 18. MATRIX EXPONENTIAL, EXPONENTIAL AND SINUSOIDAL INPUT40 

Topic 18. Matrix exponential, exponential and sinusoidal 
input 

Solutions 
18.1. Solution: We know the answer is x(𝑡) = 𝑒𝐴𝑡x(0). 
In order to compute 𝑒𝐴𝑡, we need the eigenvalues and eigenvectors of 𝐴. We don’t show 
the computation, since you should be able to do it by now. Also, you can easily check our 
answers. –Why? 

The eigenvalues are 5, 1 and these have corresponding eigenvectors [3
1] and [−1

1 
]. Using 

−1 0these we have: 𝑆 = [3 
1 ] (matrix of eigenvectors), Λ = [5 

1] (diagonal matrix of 1 0 
eigenvalues). 

−1−1
1 

] [𝑒5𝑡 0 −1So, 𝐴 = 𝑆Λ𝑆−1 and 𝑒𝐴𝑡 = 𝑆𝑒Λ𝑡𝑆−1 = [3 
𝑒𝑡] [3 

1 
] .1 0 1 

The solution to the IVP is 

−1 

x(𝑡) = 𝑒𝐴𝑡x(0) = [3 −1
1 

] [𝑒5𝑡 

𝑒
0
𝑡] [3 −1 [3

1] . 1 0 1 1 ] 

18.2. (a) Solution: Instead of using the Exponential Response Formula, we’ll essentially 
rederive it: 
We try a solution of the form x = 𝑒2𝑡C. Substitution into the DE gives 

2𝑒2𝑡C = 𝑒2𝑡𝐴C + 𝑒2𝑡 [1
0] ⇔ (2𝐼 − 𝐴)C = [1

0] ⇔ C = (2𝐼 − 𝐴)−1 [0
1] . 

Computing: 
−1−1 [1C = [3

5 −1] 0] = −1
2 

[5
1] . 

So a particular solution is xp(𝑡) = 𝑒2𝑡C = −𝑒
2
2𝑡 

[5
1] . 

(b) Solution: We write the input as a sum and use superposition. The DE is 

x ′ = 𝐴x + 𝑒2𝑡 [1
0] + 𝑒3𝑡 [0

1] . 

We solved the equation x ′ 
1 = 𝐴x1 +𝑒2𝑡 [1

0] in Part (a), where we found a particular solution 

= −𝑒2𝑡 

x1,p 2 
[1
5]. 

So we solve for the second piece, i.e., x ′ 
2 = 𝐴x2 + 𝑒3𝑡 [0

1]. Using the ERF (it’s easy to 
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remember now that we rederived it in Part (a)) we have 

−1 

C = (3𝐼 − 𝐴)−1 [0
1] = [4 −1

0 
] [0

1] = 5
1 [4

1] . 5 

𝑒3𝑡 

So a particular solution to this part is x2,p(𝑡) = 5 
[4
1] . 

By superposition, a particular solution to the original equation is 

xp(𝑡) = x1,p(𝑡) + x2,p(𝑡) = −𝑒
2
2𝑡 

[5
1] + 

𝑒
5
3𝑡 

[4
1] . 

(c) Solution: Complexify: 

= [−1 1 z ′ 

3] z + 𝑒𝑖𝑡 [1
0] , where x = Im(z).−5 

The exponential response formula gives a solution of the form z = 𝑒𝑖𝑡C, where 

−1 

C = (𝑖𝐼 − 𝐴)−1K = [𝑖 + 1 −1 [1
5 𝑖 − 3] 0] 

1 1 1= 0] = −5 
] . 1 − 2𝑖 [

𝑖 − 3
−5 𝑖 + 1] [1 

1 − 2𝑖 [
𝑖 − 3 

We could use amplitude-phase form here, but it is probably easier to use rectangular form 
to find the imaginary part. 

𝑒𝑖𝑡 

zp(t) = 
(cos(𝑡) + 𝑖 sin(𝑡))(1 + 2𝑖) [𝑖 − 3 

5
1 [ 

−5 cos(𝑡) + 5 sin(𝑡) + 𝑖(−5 cos(𝑡) − 5 sin(𝑡))
1 − 2𝑖 [

𝑖 − 3 
5−5 ] = −5 ] = −5 cos(𝑡) + 10 sin(𝑡) + 𝑖(−10 cos(𝑡) − 5 sin(𝑡))] 

(t)) = [ 
− cos(𝑡) − sin(𝑡)So, xp(t) = Im(zp −2 cos(𝑡) − sin(𝑡)] . 

18.3. Solution: We use the exponential response formula to find a particular solution. 
Rather than memorize the theorem, we will simply rederive it. 

x ′ = 𝐴x + 𝑒𝑎𝑡K, x = 𝑒𝑎𝑡C.To solve we try a solution of the form Substituting this in 
the DE and solving for the unknown C we get 

𝑎𝑒𝑎𝑡C = 𝑒𝑎𝑡𝐴C + 𝑒𝑎𝑡K ⇒ (𝑎𝐼 − 𝐴)C = K ⇒ C = (𝑎𝐼 − 𝐴)−1K. 
For the given problem we have a superposition of exponential inputs 

x ′ = 𝐴𝑥 + 𝑒−2𝑡 [1
0] + 𝑒𝑡 [−2

0 ] . 

So we apply the theorem to each input separately. 

1C1 = (−2𝐼 − 𝐴)−1 [1
0] = −4

1 [0
4 −3] [0

1] = [−1
0 ] ⇒ x1,p(𝑡) = 𝑒−2𝑡 [−1

0 ] . 

1 
−2] = [1/2 1C2 = (𝐼 − 𝐴)−1 [−2

0 ] = −4
1 [3

4 0] [ 
0 

0 
] ⇒ x2,p(𝑡) = 2𝑒𝑡 [1

0] . 
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Now superposition gives a particular solution to the DE: 

x(𝑡) = x1,p + x2,p = 𝑒−2𝑡 [−1
0 ] + 

1
2𝑒𝑡 [0

1] . 



43 TOPIC 19. FUNDAMENTAL MATRIX, VARIATION OF PARAMETERS 

Topic 19. Fundamental matrix, variation of parameters 

Solutions 
19.1. Solution: Let 𝑦 = 𝑥′ . The equation becomes 𝑦′ + 𝑝(𝑡)𝑦 + 𝑞(𝑡)𝑥 = 𝑓(𝑡). We write 
the pair of equations: 

𝑥′ = 𝑦 0 1⇔ [𝑥′ 

𝑦] + [ 
0

𝑦′ = −𝑞(𝑡)𝑥 − 𝑝(𝑡)𝑦 +𝑓(𝑡) 𝑦′] = [−𝑞(𝑡) −𝑝(𝑡)] [𝑥 
𝑓(𝑡)] 

19.2. 
(a) Solution: A set of vectors are independent if no one of them is a linear combination 
of the others (equivalently, if no nontrivial linear combination of all of them is 0). For two 
vectors this means the neither is a constant mutiple of the other. This is clear for the two 
vector functions given. 
(b) Solution: The Wronskian is defined as the determinant of the matrix with these 
vectors as columns: 

𝑡 𝑡2
𝑊 (x1, x2) = ∣x1 x2∣ = ∣ ∣ = 𝑡2

1 2𝑡 

x2] = [𝑡 𝑡2 

(c) Solution: Following the hint we let Φ(𝑡) = [x1 1 2𝑡] . 

Since Φ′ = 𝐴Φ, we know 𝐴(𝑡) = Φ′(𝑡)Φ−1(𝑡). This is just a calculation. We use the answer 
in Part (b) to help compute the inverse. 

𝐴 = Φ′Φ−1 = [1 2𝑡 
𝑡2 [ 2𝑡 −𝑡2 1 𝑡2 

0 2 ] ( 
1 

−1 𝑡 ]) = 𝑡2 
[−2

0 
2𝑡] 

1 𝑡2 

Thus the system is x ′ = 𝑡2 
[−2

0 
2𝑡] x. 

(d) Solution: The existence and uniqueness theorem requires that 𝐴(𝑡) is continuous. 
Since 𝐴(𝑡) (given in Part (c)) is not continuous at 𝑡 = 0, the conclusion of the theorem may 
not hold when 𝑡 = 0. That is, two different solutions might take the same value at 𝑡 = 0. 

19.3. Solution: First we solve the homogeneous equation x ′ = [1 1
4 −2] x. 

1 − 𝜆 1Eigenvalues: (char. eq.) ∣ ∣ = 𝜆2 + 𝜆 − 6 = 0 ⇒ 𝜆 = 2, −3.4 −2 − 𝜆 

For eigenvectors we want a basis of the null space of 𝐴 − 𝜆𝐼 . 
1𝜆 = 2: (𝐴 − 𝜆𝐼) = [−1 

−4]. By inspection we can take v = [1
1] as an eigenvector. 4 

1𝜆 = −3: (𝐴 − 𝜆𝐼) = [4 
1]. By inspection we can take v = [−4

1 ] as an eigenvector. 4 

x1(t) = 𝑒2𝑡 [1 x2 = 𝑒−3𝑡 [ 
1Thus we have two solutions: and1] −4]. 



44 TOPIC 19. FUNDAMENTAL MATRIX, VARIATION OF PARAMETERS 

Next we solve the given inhomogeneous equation using variation of parameters. 
𝑒−3𝑡 

= −𝑒
5
𝑡 

[−4𝑒−3𝑡 −𝑒−3𝑡 

Fundamental matrix Φ = [𝑒
𝑒

2𝑡
2𝑡 −4𝑒−3𝑡] ⇒ |Φ| = −5𝑒−𝑡 ⇒ Φ−1 

𝑒2𝑡 ].−𝑒2𝑡 

Variation of parameters formula: 

5 
[−4𝑒−3𝑡 𝑒−3𝑡 

𝑒2𝑡 ] [ 
𝑒−2𝑡 

x = Φ(𝑡) (∫ Φ(𝑡)−1F(t) 𝑑𝑡 + c) = Φ(𝑡) (∫ − 
𝑒𝑡 

−2𝑒𝑡] 𝑑𝑡 + c) . −𝑒2𝑡 

Side work to compute the integral: 

5 
[−4𝑒−3𝑡 −𝑒−3𝑡

] [ 
𝑒−2𝑡 1 1∫ −𝑒𝑡 

−2𝑒𝑡] 𝑑𝑡 = 5 ∫ [4𝑒−4𝑡 − 2𝑒−𝑡
] 𝑑𝑡 = 10 [−2𝑒−4𝑡 + 4𝑒−𝑡

] . −𝑒2𝑡 𝑒2𝑡 2𝑒𝑡 + 𝑒4𝑡 𝑒𝑡 + 2𝑒4𝑡 

[ 
𝑒𝑡/2Thus, x(𝑡) = Φ(𝑡) ⋅ (10

1 [−2𝑒−4𝑡 + 4𝑒−𝑡
] + c) = −𝑒−2𝑡] + 𝑐1𝑒2𝑡 [1

1] + 𝑐2𝑒−3𝑡 [−4
1 ] .2𝑒𝑡 + 𝑒4𝑡 

19.4. Solution: First we solve the homogeneous equation x ′ = [2 −1
3 −2] x. 

2 − 𝜆 −1Eigenvalues: (char. eq.) ∣ ∣ = 𝜆2 − 1 = 0 ⇒ 𝜆 = 1, −1.3 −2 − 𝜆 

For eigenvectors we want a basis of the null space of 𝐴 − 𝜆𝐼 . 
−1𝜆 = 1: (𝐴 − 𝜆𝐼) = [1 
−3]. By inspection we can take v = [1

1] as an eigenvector. 3 

−1𝜆 = −1: (𝐴 − 𝜆𝐼) = [3 
−1]. By inspection we can take v = [3

1] as an eigenvector. 3 

Thus we have two solutions: x1 = 𝑒𝑡 [1
1] and x2 = 𝑒−𝑡 [1

3] 

Next we solve the given inhomogeneous equation. 
𝑒−𝑡 

Φ = [𝑒𝑡 1
2 

[3𝑒−𝑡 −𝑒−𝑡 

Fundamental matrix 3𝑒−𝑡] ⇒ |Φ(𝑡)| = 2 and Φ−1 = ].𝑒𝑡 −𝑒𝑡 𝑒𝑡 

Variation of parameters formula: 

2 
[3𝑒−𝑡 𝑒−𝑡 

x = Φ(𝑡) (∫ Φ(𝑡)−1F(t) 𝑑𝑡 + c) = Φ(𝑡) (∫ 
1 

𝑒𝑡 ] [−𝑒
𝑒𝑡 

𝑡] 𝑑𝑡 + c) . −𝑒𝑡 

Side work to compute the integral: 

2 
[3𝑒−𝑡 −𝑒−𝑡 

∫ 
1 ] [−𝑒

𝑒𝑡 

𝑡] 𝑑𝑡 = ∫ [−𝑒
2

2𝑡] 𝑑𝑡 = [𝑒2𝑡
2𝑡
/2] . −𝑒𝑡 𝑒𝑡 

Thus, 

([ 
2𝑡 [ 

2𝑡𝑒𝑡 − 𝑒𝑡/2x(𝑡) = Φ(𝑡) ⋅ 𝑒2𝑡/2] + c) = 2𝑡𝑒𝑡 − 3𝑒𝑡/2] + 𝑐1𝑒𝑡 [1
1] + 𝑐2𝑒−𝑡 [1

3] . 



45 TOPIC 20. STEP AND DELTA FUNCTIONS. 

Topic 20. Step and delta functions. 

Solutions 
20.1. (Integration) Solution: The interval of integration contains 0 and 5, but not -1 or 
20. So only the 𝛿(𝑡) and 𝛿(𝑡 − 5) terms contribute to the integral. Their contributions are 
3 and 25 (𝑡2 evaluated at 5). So the value of the integral is 28. 

⎧0 for 𝑡 < 0 {
−2𝑣

𝑡0
020.2. (Differentiation) Solution: 𝑣′(𝑡) = 𝑣𝑜𝛿(𝑡) + 𝑣0𝛿(𝑡 − 𝑡0) + for 0 < 𝑡 < 𝑡0⎨{⎩0 for 𝑡 > 𝑡0 

𝑡 

𝑣′ 

𝑣0 𝑣0 

− 2𝑣0
𝑡0 

𝑡0 

20.3. Solution: (a) The pre-initial conditions are 𝑥(0−) = 0, 𝑥′(0−) = 0. 
For 𝑡 < 0: The input 𝛿(𝑡) = 0. So the DE with initial conditions is 

2𝑥″ + 2𝑥′ = 0; 𝑥(0−) = 0, 𝑥′(0−) = 0. 

It is easy to see the solution to this is 𝑥(𝑡) = 0. 
For 𝑡 > 0: The post-initial conditions are 𝑥(0+) = 0, 𝑥′(0+) = 1/2. 
On this interval, the input 𝛿(𝑡) = 0. So the DE with initial conditions is 

2𝑥″ + 2𝑥′ = 0; 𝑥(0+) = 0, 𝑥′(0+) = 1/2. 

The general homogeneous solution is 𝑥(𝑡) = 𝑐1 + 𝑐2𝑒−𝑡. Using the post-IC to find 𝑐1 and
𝑐2, we get 𝑥(𝑡) = 1/2 − 𝑒−𝑡/2. 
Putting the pieces together we have 

for 𝑡 < 0 𝑥(𝑡) = {0
1 

2𝑒−𝑡 
2 − 1 for 𝑡 > 0. 

(b) This is exactly the same as Part (a) except time is shifted to the right.𝑥 

for 𝑡 < 1 𝑥(𝑡) = {0
1 

2𝑒−(𝑡−1)
2 − 1 for 𝑡 > 1. 

1 
𝑡 

𝑡 

𝑥 



46 TOPIC 21. FOURIER SERIES: BASICS. 

Topic 21. Fourier series: basics. 

Solutions 
21.1. Solution: (a) sin(𝜋𝑡/3) has period 6. 
(b) | sin(𝑡)| has period 𝜋. 

(c) cos(3𝑡) has period 2𝜋/3 so cos2(3𝑡) has period 𝜋/3 . 

21.2. Solution: Here is the sketch: 

𝑡 

𝑓(𝑡)
1 

−2 −1 1 2 

We have the half-period 𝐿 = 1/2. The integrals for the Fourier coefficient should be over 
one full period. In this case, it seems easier to integrate from 0 to 1 rather than from −1/2 
to 1/2. 

1 1 

𝑎0 = 
1 𝑡 𝑑𝑡 = 2 [𝑡2 

= 11/2 ∫ 2 ]
0 0 

1 11 + 
𝑐𝑜𝑠(2𝑛𝜋𝑡) 𝑎𝑛 = 𝑡 cos(2𝑛𝜋𝑡) 𝑑𝑡 = 2 [𝑡 sin(2𝑛𝜋𝑡) ] (by parts or by table lookup) 1/2 

∫ 2𝑛𝜋 (2𝑛𝜋)2
0 0 

= 0 
1 11 + 

sin(2𝑛𝜋𝑡) 𝑏𝑛 = 𝑡 sin(2𝑛𝜋𝑡) 𝑑𝑡 = 2 [−𝑡 cos(2𝑛𝜋𝑡) ] (by parts or by table lookup) 1/2 
∫ 2𝑛𝜋 (2𝑛𝜋)2 

= − 1
0 0 

𝑛𝜋 

∞ ∞𝑎0 1 ∞ sin(2𝑛𝜋𝑡) So, 𝑓(𝑡) = 2 
+ ∑ 𝑎𝑛 cos(2𝑛𝜋𝑡) + ∑ 𝑏𝑛 sin(2𝑛𝜋𝑡) = 2 − 1 ∑ .𝜋 𝑛 𝑛=1 𝑛=1 𝑛=1 



47 TOPIC 22. FOURIER SERIES INTRODUCTION CONTINUED. 

Topic 22. Fourier series introduction continued. 

Solutions 
22.1. Solution: This is an even function, so we only need to compute the cosine 
coefficients (𝑎𝑛). We don’t show all the details of the integrations. 
We have the half-period 𝐿 = 1/2. In this case, it is easiest to integrate over a full period 
[0, 1] rather than use the doubling trick for even functions. 

1 1 

𝑎0 = 
1 sin(𝜋𝑡) 𝑑𝑡 = −2 [cos(𝜋𝑡)] = 

4 
1/2 ∫ 𝜋 𝜋 0 0 

1 sin(𝜋𝑡 + 2𝑛𝜋𝑡) + sin(𝜋𝑡 − 2𝑛𝜋𝑡) 4𝑎𝑛 = 
1 

sin(𝜋𝑡) cos(2𝑛𝜋𝑡) 𝑑𝑡 = 2 ∫
1 

𝑑𝑡 = −1/2 
∫ 2 𝜋(4𝑛2 − 1) 0 0 

sin(𝜋𝑡 + 2𝑛𝜋𝑡) + sin(𝜋𝑡 − 2𝑛𝜋𝑡) This integral can be done using the formula sin(𝜋𝑡) cos(2𝑛𝜋𝑡) = 2 
or by table lookup. 

2 ∞ cos(2𝑛𝜋𝑡) So, 𝑓(𝑡) = ∑𝜋 − 𝜋
4 

4𝑛2 − 1 𝑛=1 

t

f(t)

−1 1 2

22.2. Solution: We start by graphing 𝑓(𝑡). 
𝑓(𝑡) 

𝑡 𝜋 −𝜋 2𝜋 −2𝜋 

This is an even function with half-period 𝐿 = 𝜋. So, 𝑏𝑛 = 0 and 
𝜋 

𝑎0 = 𝑡 𝑑𝑡 = 𝜋 𝜋
2 ∫ 

0 
𝜋 2 for 𝑛 odd 𝑎𝑛 = 𝑡 cos(𝑛𝑡) 𝑑𝑡 = {−4/𝑛2𝜋 

𝜋 ∫ 0 for 𝑛 even. 0 

(The integral can be done by parts or by table lookup.) 

𝜋 cos(𝑡) cos(3𝑡) cos(5𝑡) 𝜋 cos(𝑛𝑡)So, 𝑓(𝑡) = 2 − 4 ⋅ − 4 ⋅ − 4 ⋅ … = 2 − 4 
𝜋 1 𝜋 32 𝜋 52 𝜋 ∑ 𝑛2

𝑛 odd 



TOPIC 23. SINE AND COSINE SERIES; CALCULATION TRICKS. 48 

Topic 23. Sine and cosine series; calculation tricks. 

Solutions 
23.1. 
(a) Solution: We have 𝐿 = 1. To compute the sine coefficients, the integral for 𝑏𝑛 is 
computed using integration by parts (or table lookup). 

1 1 

+ 
𝑥 cos(𝑛𝜋𝑥) − 

sin(𝑛𝜋𝑥) 2𝑏𝑛 = 2 ∫ (1 − 𝑥) sin(𝑛𝜋𝑥) 𝑑𝑥 = 2 [−cos(𝑛𝜋𝑥) ] = 
0 𝑛𝜋 𝑛𝜋 𝑛2𝜋2 

0 
𝑛𝜋 

So, over the interval 0 < 𝑥 < 1, 

2 2 ∞ sin(𝑛𝜋𝑥) 𝑓(𝑥) = 𝜋 
sin(𝜋𝑥) + 2𝜋

2 sin(2𝜋𝑥) + 3𝜋
2 sin(3𝜋𝑥) + 4𝜋

2 sin(4𝜋𝑥) + … = ∑ .𝜋 𝑛 1 

(b) Solution: As in Part (a) we have 𝐿 = 1. We compute the cosine coefficients. The 
integral for 𝑎𝑛 is computed using integration by parts. 

1
𝑎0 = 2 ∫ 1 − 𝑥 𝑑𝑥 = 1 

0 
1 1 

− 
𝑥 sin(𝑛𝜋𝑥) − 

cos(𝑛𝜋𝑥) = {4/(𝑛2𝜋2) for 𝑛 odd 𝑎𝑛 = 2 ∫ (1 − 𝑥) cos 𝑛𝜋𝑥 𝑑𝑥 = 2 [sin(𝑛𝜋𝑥) ]
0 𝑛𝜋 𝑛𝜋 𝑛2𝜋2 

0 0 for 𝑛 even 

So, over the interval 0 < 𝑥 < 1, 

1 4 2 1 cos(𝑛𝜋𝑥) 𝑓(𝑥) = 2 
+ 𝜋

4
2 

cos(𝜋𝑥) + 32𝜋2 
cos(3𝜋𝑥) + 52𝜋2 

cos(5𝜋𝑥) + … = 2 + 
4 .𝜋2 

∑ 𝑛2 
odd 



49 TOPIC 24. LINEAR ODES WITH PERIODIC INPUT. 

Topic 24. Linear ODEs with periodic input. 

Solutions 
24.1. (a) Solution: For an undamped system 𝑚𝑥″ + 𝑘𝑥 = 𝑓(𝑡), the natural frequency 
is 𝜔0 = √𝑘/𝑚. So the natural frequency of the system 2𝑥″ + 10𝑥 = 𝑓(𝑡) is 𝜔0 =

√
5. 

∞ 

The function 𝑓(𝑡) is odd with period 2, so 𝑓(𝑡) = ∑ 𝑏𝑛 sin(𝑛𝜋𝑡). Since none of the frequen-
𝑛=1 

cies 𝑛𝜋 equals 
√

5, there is no pure resonance. 
(b) Solution: The natural frequency of the system 𝑥″ + 4𝜋2𝑥 = 𝑓(𝑡) is 𝜔0 = 2𝜋. 

∞ 

The function 𝑓(𝑡) is odd with period 2, so 𝑓(𝑡) = ∑ 𝑏𝑛 sin(𝑛𝜋𝑡). This means that the 𝑛 = 2 
𝑛=1 

term will cause resonance as long as 𝑏2 ≠ 0. So we need to compute the value of 𝑏2. 
We have 𝐿 = 1 and 𝑓(𝑡) is odd, so 

1 1 

+ 4 sin(2𝜋𝑡) −4𝑏2 = 2 ∫ 2𝑡 sin(2𝜋𝑡) 𝑑𝑡 = [−4𝑡 cos(2𝜋𝑡) ] = 
0 2𝜋 (2𝜋)2 

0 
2𝜋 

. 

Since 𝑏2 ≠ 0, there is pure resonance. 
(c) Solution: The natural frequency of the system 𝑥″ + 9𝑥 = 𝑓(𝑡) is 𝜔0 = 3. 

∞ 

The function 𝑓(𝑡) is odd with period 2𝜋, so 𝑓(𝑡) = ∑ 𝑏𝑛 sin(𝑛𝑡). So the 𝑛 = 3 term will 

cause resonance as long as 𝑏3 ≠ 0. 
𝑛=1 

We know that 𝑓(𝑡) is the period 2𝜋, odd square wave, so 

4 sin(𝑛𝑡)𝑓(𝑡) = .𝜋 ∑ 𝑛 𝑛 odd 

Since 𝑏3 = 3𝜋
4 ≠ 0, there is pure resonance. 

24.2. Solution: First we compute the Fourier series for 𝑓(𝑡). Since 𝑓(𝑡) is odd with 
period 2𝜋, we have 

∞
𝑓(𝑡) = ∑ 𝑏𝑛 sin(𝑛𝑡),

𝑛=1 

where 𝜋 𝜋 2 
𝜋
2 [−2𝑡 cos(𝑛𝑡) + 

2 sin(𝑛𝑡)𝑏𝑛 = 2𝑡 sin(𝑛𝑡) 𝑑𝑡 = ] = (−1)𝑛+1 4 
𝜋 ∫

0 𝑛 𝑛2 𝑛 0 

∞ 

(−1)𝑛+1 sin(𝑛𝑡)So the DE is: 𝑥″ + 𝑥′ + 3𝑥 = 4 ∑ .𝑛 𝑛=0 

We’ll solve for each piece first and then use superposition. Let 

𝑥″
𝑛 + 𝑥′

𝑛 + 3𝑥𝑛 = (−1)𝑛+1 

𝑛
4 sin(𝑛𝑡). 
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We can solve this using the sinusoidal response formula (SRF). First, compute 𝑃 (𝑖𝑛) in 
polar form. (𝑃(𝑟) = 𝑟2 + 𝑟 + 3) 

𝑃 (𝑖𝑛) = 3−𝑛2+𝑖𝑛; |𝑃 (𝑖𝑛)| = √(3 − 𝑛2)2 + 𝑛2; 𝜙(𝑛) = Arg(𝑃 (𝑖𝑛)) = tan−1 𝑛/(3 − 𝑛2) in Q1 or Q2 . 

𝑥𝑛,𝑝(𝑡) = (−1)𝑛+1 4 sin(𝑛𝑡 − 𝜙(𝑛)) 4 sin(𝑛𝑡 − 𝜙(𝑛)) = (−1)𝑛+1
𝑛|𝑃 (𝑖𝑛)| 𝑛√(3 − 𝑛2)2 + 𝑛2 

.The SRF gives: 

Superposition: 
∞ ∞ sin(𝑛𝑡 − 𝜙(𝑛)) 𝑥𝑝(𝑡) = ∑ 𝑥𝑛,𝑝 = 4 ∑(−1)𝑛+1 . 

𝑛=0 𝑛=1 𝑛 √(3 − 𝑛2)2 + 𝑛2 

24.3. (a) Solution: 𝑓(𝑡) is the same function as in problem 2. Its Fourier series is 

∞
𝑓(𝑡) = ∑ 𝑏𝑛 sin(𝑛𝑡), where 𝑏𝑛 = (−1)𝑛+1 

𝑛
4 

𝑛=1 

Let’s consider 𝑓(𝑡) to be the input. This does not change the arithmetic, but it will allow 
us to use the language of gain and resonance. 
The system has natural frequency 𝜔0 = 3. Since it is lightly damped, the resonant frequency 
will be close to 𝜔0. So we expect the sin(3𝑡) term to have the biggest gain. This tells us to 
expect that the output term with the biggest amplitude will be either the sin(3𝑡) term or a 
nearby one. 
It is easy enough to compute the output amplitude for each term: 

𝑛 
sin(𝑛𝑡) ⇒ output: (−1)𝑛+1 4 sin(𝑛𝑡 − 𝜙(𝑛)) 4 sin(𝑛𝑡 − 𝜙(𝑛)) Input term: (−1)𝑛+1 4 = (−1)𝑛+1

𝑛|𝑃 (𝑖𝑛)| 𝑛√(18 − 2𝑛2)2 + (0.1𝑛)2 
. 

Looking at the first few output amplitudes we get 

4𝑛 = 1 ∶ amplitude = √
162 + 0.01 

≈ 0.25 

4𝑛 = 2 ∶ amplitude = 
2
√

102 + 0.04 
≈ 0.20 

𝑛 = 3 ∶ amplitude = 3
√4

.09 
≈ 4.44 

𝑛 = 4 ∶ amplitude = 
4
√

142
4

+ .16 
≈ 0.07. 

This shows that the 𝑛 = 3 term has the biggest output amplitude. 
(b) Solution: We need to compute the Fourier series for 𝑓(𝑡). Since it is odd with period 
2 we have ∞

𝑓(𝑡) = ∑ 𝑏𝑛 sin(𝑛𝜋𝑡), 
𝑛=1 

where 
1 if 𝑛 odd 𝑏𝑛 = 2 ∫ (𝑡 − 𝑡2) sin(𝑛𝜋𝑡) 𝑑𝑡 = {8/(𝑛𝜋)3 

0 0 if 𝑛 even 
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Let’s consider 𝑓(𝑡) to be the input. This does not change the arithmetic, but it will allow 
us to use the language of gain and resonance. 
The system has natural frequency 𝜔0 = 

√
10. Since it is lightly damped, the resonant 

frequency will be close to 𝜔0. So we expect the sin(𝜋𝑡), i.e., 𝑛 = 1, term to have the biggest 
gain. This tells us to expect that the output term with the biggest amplitude will be either 
the sin(𝜋𝑡) term or a nearby one. 
It is easy enough to compute the output amplitude for each term: 

8 8 sin(𝑛𝜋𝑡 − 𝜙(𝑛)) 8 sin(𝑛𝜋𝑡 − 𝜙(𝑛)) Input term: (𝜋𝑛)3 
sin(𝑛𝜋𝑡) ⇒ output: = (𝜋𝑛)3|𝑃 (𝑖𝑛𝜋)| (𝜋𝑛)3√(30 − 3𝜋2𝑛2)2 + 𝜋2𝑛2 

. 

Since both the gain and the input amplitude are biggest for the 𝑛 = 1 term, we know that 
the 𝑛 = 1 term has the biggest output amplitude. 
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Topic 25. PDEs; separation of variables. 

Solutions 
25.1. Solution: First, let’s identify all the parts of the problem: 
PDE and range. 𝑢𝑡 = 𝑢𝑥𝑥 for 0 ≤ 𝑥 ≤ 10; 𝑡 > 0. 
Boundary conditions (BC). 𝑢𝑥(0, 𝑡) = 𝑢𝑥(10, 𝑡) = 0. (Notice the derivatives.) 

Initial conditions (IC). 𝑢(𝑥, 0) = 4𝑥. 

Here are the steps to the solution: 
Step 1. Find separated solutions to the PDE. 
Step 2. Find the modal solutions, i.e., the sepatated solutions that also satisfy the BC. 
Step 3. The general solution is a linear combination of the modal solutions. 
Step 4. Use the inititial conditions to determine the values of the coefficients in the general 
solution. 
Step 1. (Find separated solutions to the PDE.) 

Trial solution to PDE: 𝑢(𝑥, 𝑡) = 𝑋(𝑥)𝑇 (𝑡) (i.e., guess a separated solution). 

⇒ 
𝑇 ′(𝑡) 𝑋″(𝑥)Plug into the PDE: 𝑋(𝑥)𝑇 ′(𝑡) = 𝑋″(𝑥)𝑇 (𝑡) =𝑇 (𝑡) 𝑋(𝑥) 

. 

Observation: The left side is a function of 𝑥 and the right is a function of 𝑡. Since 𝑥 and 𝑡 
are independent variables, both sides must be constant. Call the constant −𝜆. Therefore, 

𝑋″(𝑥) 𝑇 ′(𝑡)= = −𝜆.𝑋(𝑥) 𝑇 (𝑡) 

Rearranging these equations we get 

𝑋″ + 𝜆𝑋 = 0, 𝑇 ′ + 𝜆𝑇 = 0. 

These equations are easy to solve. We have three cases 𝜆 > 0, 𝜆 = 0, 𝜆 < 0. 
Case (i) 𝜆 > 0: 𝑋(𝑥) = 𝑎 cos(

√
𝜆𝑥) + 𝑏 sin(

√
𝜆𝑥), 𝑇 (𝑡) = 𝑐𝑒−𝜆𝑡. So, 

𝑐𝑒−𝜆𝑡.𝑢(𝑥, 𝑡) = 𝑎 cos(
√

𝜆𝑥) + 𝑏 sin(
√

𝜆𝑥) ⋅ 

Case (ii) 𝜆 < 0: 𝑋(𝑥) = 𝑎𝑒√|𝜆|𝑥 + 𝑏𝑒−√|𝜆|𝑥, 𝑇 (𝑡) = 𝑐𝑒−𝜆𝑡. So, 

𝑢(𝑥, 𝑡) = 𝑋(𝑥)𝑇 (𝑡) = (𝑎𝑒√|𝜆|𝑥 + 𝑏𝑒−√|𝜆|𝑥) ⋅ 𝑐𝑒−𝜆𝑡. 

Case (iii) 𝜆 = 0: 𝑋(𝑥) = 𝑎 + 𝑏𝑥, 𝑇 (𝑡) = 𝑐. So, 

𝑢(𝑥, 𝑡) = (𝑎 + 𝑏𝑥) ⋅ 𝑐. 

Step 2. (Find the modal solutions, i.e., the separated solutions that also satisfy the bound-
ary conditions.) 

For the separated solution 𝑢(𝑥, 𝑡) = 𝑋(𝑥)𝑇 (𝑡), our boundary conditions become 

𝑢𝑥(0, 𝑡) = 𝑋′(0)𝑇 (𝑡) = 0 and 𝑢𝑥(10, 𝑡) = 𝑋′(10)𝑇 (𝑡) = 0. 
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Since we want nontrivial solutions, we must have 𝑋′(0) = 0 and 𝑋′(10) = 0. 

We look at each case in turn. 
Case (i): 𝑋′(0) = 

√
𝜆𝑏 = 0, 𝑋′(10) = −

√
𝜆𝑎 sin(10

√
𝜆) + 

√
𝜆𝑏 cos(10

√
𝜆) = 0. 

These imply 𝑏 = 0 and either 𝑎 = 0 or sin(10
√

𝜆) = 0. 
The case 𝑏 = 0, 𝑎 = 0 gives a trivial solution, so we ignore it. Therefore, we must have 
sin(10

√
𝜆) = 0, i.e., 10

√
𝜆 = 𝑛𝜋 for some positive integer 𝑛. We conclude: for each positive 

integer 𝑛, 
𝑒−( 𝑛𝜋 𝑢𝑛(𝑥, 𝑡) = 𝑎𝑛 cos (𝑛𝜋 𝑥 ⋅ 10 )2 𝑡 

10 
) 

satisfies both the PDE and BC. 
Case (ii): Easy algebra shows that, in this case, only trivial separated solutions satisfy the 
BC. 
Case (iii): 𝑋′(0) = 𝑋′(10) = 𝑏 = 0 ⇒ 𝑋(𝑥) = 𝑎. 
Conclusion: The constant solution 

𝑎0𝑢0(𝑥, 𝑡) = 2 

satisfies both PDE and BC. (We write it as 𝑎0/2 for when it is the constant term in a 
Fourier series.) 

Step 3. Use superposition to get the general solution. 
The general solution to the PDF and BC is: 

∞ ∞𝑎0 𝑎𝑛 cos (𝑛𝜋𝑥 𝑒−( 𝑛𝜋 𝑢(𝑥, 𝑡) = 𝑢0 + ∑ 𝑢𝑛(𝑥, 𝑡) = 2 
+ ∑ ⋅ 10 )2 𝑡 

10 
)

𝑛=1 𝑛=1 

Step 4. (Use the IC to compute the values of the coefficients) 

The IC give 
∞𝑎0 𝑎𝑛 cos (𝑛𝜋𝑥 𝑢(𝑥, 0) = ∑ 10 

) = 4𝑥 on [0, 10]. 2 
+ 

𝑛=1 

That is, we have a Fourier cosine series for 𝑓(𝑥) = 4𝑥. You can compute this cosine series 
directly, or notice that the even period 20 extension is a triangle wave. We found that 

4𝑥 = 20 − ∑ 
160 

10 
𝑥) . (𝑛𝜋)2 

cos (𝑛𝜋 

𝑛 odd 

This gives us the values of 𝑎𝑛 and the solution to the PDE with BC and IC: 

160 
10 

) 𝑒−( 𝑛𝜋
10 )

2 𝑡 𝑢(𝑥, 𝑡) = 20 − ∑ (𝑛𝜋)2 
cos (𝑛𝜋𝑥 for 𝑥 in [0,10]. 

𝑛 odd 

25.2. Solution: We follow the same steps as in Problem 1. 
PDE and range. 𝑦𝑡𝑡 = 4𝑦𝑥𝑥 for 0 ≤ 𝑥 ≤ 𝜋; 𝑡 > 0 
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Boundary conditions (BC). 𝑦(0, 𝑡) = 𝑦(𝜋, 𝑡) = 0 

Initial conditions (IC). 𝑦(𝑥, 0) = 10
1 sin(2𝑥); 𝑦𝑡(𝑥, 0) = 0. 

Step 1. (Find separated solutions to the PDE.) 
Trial solution to PDE: 𝑦(𝑥, 𝑡) = 𝑋(𝑥)𝑇 (𝑡) (i.e., guess a separated solution). 
Plug into PDE: 𝑋(𝑥)𝑇 (𝑡)″ = 4𝑋(𝑥)″𝑇 (𝑡). 

𝑋(𝑥)″ 𝑇 (𝑡)″ 

Algebra: = ⇒ 𝑋″ + 𝜆𝑋 = 0, 𝑇 ″ + 4𝜆𝑇 = 0.𝑋(𝑥) 4𝑇 (𝑡) 
= −𝜆 

(As in Problem 1, we have a function of 𝑥 equals a function of 𝑡. Since 𝑥 and 𝑡 are 
independent, both functions must be constant.) 

We have three cases 𝜆 > 0, 𝜆 = 0, 𝜆 < 0. 
Case (i) 𝜆 > 0: 𝑋(𝑥) = 𝑎 cos(

√
𝜆𝑥) + 𝑏 sin(

√
𝜆𝑥), 𝑇 (𝑡) = 𝑐 cos(2

√
𝜆𝑡) + 𝑑 sin(2

√
𝜆𝑡). 

So, 

𝑦(𝑥, 𝑡) = 𝑋(𝑥)𝑇 (𝑡) = (𝑎 cos(
√

𝜆𝑥) + 𝑏 sin(
√

𝜆𝑥)) ⋅ (𝑐 cos(2
√

𝜆𝑡) + 𝑑 sin(2
√

𝜆𝑡)). 

Case (ii) 𝜆 < 0: Ignore, since it only has trivial solutions to the PDE and BC. 
Case (iii) 𝜆 = 0: 𝑋(𝑥) = 𝑎 + 𝑏𝑥, 𝑇 (𝑡) = 𝑐 + 𝑑𝑡. So, 

𝑦(𝑥, 𝑡) = 𝑋(𝑥)𝑇 (𝑡) = (𝑎 + 𝑏𝑥) ⋅ (𝑐 + 𝑑𝑡) 

Step 2. (Find the modal solutions, i.e., the separated solutions that also satisfy the BC.) 

For the separated solution 𝑦(𝑥, 𝑡) = 𝑋(𝑥)𝑇 (𝑡), our boundary conditions become 

𝑦(0, 𝑡) = 𝑋(0)𝑇 (𝑡) = 0 and 𝑦(𝜋, 𝑡) = 𝑋(𝜋)𝑇 (𝑡) = 0. 

Since we want nontrivial solutions we must have 𝑋(0) = 0 and 𝑋(𝜋) = 0. 
Looking at the 3 cases: 
Case (i): 𝑋(0) = 𝑎 = 0, 𝑋(𝜋) = 𝑎 cos(

√
𝜆𝜋) + 𝑏 sin(

√
𝜆𝜋). 

The nontrivial solutions have 𝑎 = 0 and 
√

𝜆 = 𝑛 for some positive integer 𝑛. 
Conclusion: For each positive integer 𝑛, 

𝑦𝑛(𝑥, 𝑡) = sin(𝑛𝑥) ⋅ (𝑐𝑛 cos(2𝑛𝑡) + 𝑑𝑛 sin(2𝑛𝑡)) 

satisfies both the PDE and BC. 
Case (ii): Ignore. 
Case (iii): 𝑋(0) = 𝑎 = 0 𝑋(𝜋) = 𝑎 + 𝑏𝜋 = 0. Thus, 𝑎 = 0, 𝑏 = 0, i.e., there are only 
trivial solutions in this case. 
So, for Step 2, only case (i) gives nontrivial modal solutions. 

Step 3. (Use superposition to get the general solution.) 

By superpositioning all the modal solutions from Step 2 we have 

𝑦(𝑥, 𝑡) = ∑ 𝑦𝑛(𝑥, 𝑡) = ∑ sin(𝑛𝑥) ⋅ (𝑐𝑛 cos(2𝑛𝑡) + 𝑑𝑛 sin(2𝑛𝑡))
𝑛=1 𝑛=1 
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is the general solution to the PDE and BC. 
Step 4. Use the IC to determine the values of the coefficients. 

𝑦(𝑥, 0) = ∑ 𝑐𝑛 sin(𝑛𝑥) = 10
1 sin(2𝑥) on [0, 𝜋] 

That is, the coefficients 𝑐𝑛 are the Fourier sine coefficients of the function 10
1 sin(2𝑥). Since 

this is already written as a sine series, we have 

= {1/10 if 𝑛 = 2𝑐𝑛 0 if 𝑛 ≠ 2 

Using the other IC: 

𝑦𝑡(𝑥, 0) = ∑ sin(𝑛𝑥) ⋅ 𝑑𝑛2𝑛 = 0 ⇒ 𝑑𝑛 = 0 for all 𝑛. 

We have solved the PDE with BC and IC: 

1𝑦(𝑥, 𝑡) = ∑ 𝑐𝑛 sin(𝑛𝑥) cos(2𝑛𝑡) = 10 
sin(2𝑥) cos(4𝑡). 

25.3. Solution: We follow the same steps as in Problems 1 and 2, but with much less 
commentary. 
Step 1. (Find separated solutions to the PDE) 

Guess 𝑦(𝑥, 𝑡) = 𝑋(𝑥)𝑇 (𝑡) (separated solution). 

⇒ 
𝑋(𝑥)″ 𝑇 (𝑡)″ 

Plug into PDE: 𝑋(𝑥)𝑇 (𝑡)″ = 100𝑋(𝑥)″𝑇 (𝑡) =𝑋(𝑥) 100𝑇 (𝑡) 
= −𝜆 constant. 

Thus, 𝑋″ + 𝜆𝑋 = 0, 𝑇 ″ + 𝜆100𝑇 = 0. 
Case (i) 𝜆 > 0: 𝑋(𝑥) = 𝑎 cos(

√
𝜆𝑥) + 𝑏 sin(

√
𝜆𝑥), 𝑇 (𝑡) = 𝑐 cos(10

√
𝜆𝑡) + 𝑑 sin(10

√
𝜆𝑡). 

Case (ii) Ignore. Never produces nontrivial modal solutions. 
Case (iii) 𝜆 = 0 ⇒ 𝑋(𝑥) = 𝑎 + 𝑏𝑥, 𝑇 (𝑡) = 𝑐 + 𝑑𝑡. 

Step 2. (Find the modal solutions.) 

Boundary conditions for nontrivial solutions: 𝑋(0) = 0 and 𝑋(1) = 0. 
Case (i): 𝑋(0) = 𝑎 = 0, 𝑋(1) = 𝑎 cos(

√
𝜆) + 𝑏 sin(

√
𝜆) = 0. 

Solving: Nontrivial solutions when 𝑎 = 0, 
√

𝜆 = 𝑛𝜋 for some positive integer 𝑛. 
Conclusion: For each positive integer 𝑛 

𝑦𝑛(𝑥, 𝑡) = sin(𝑛𝜋𝑥) ⋅ (𝑐𝑛 cos(10𝑛𝜋𝑡) + 𝑑𝑛 sin(10𝑛𝜋𝑡)) 

satisfies both the PDE and BC, i.e., is a modal solution. 
Case (ii): Ignore. 
Case (iii): 𝑋(0) = 𝑎 = 0, 𝑋(1) = 𝑎 + 𝑏 = 0. 
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Solving: 𝑎 = 0, 𝑏 = 0, i.e., only trivial solutions in this case. 

Step 3. (Use superposition to get the general solution.) 

The general solution to the PDE and BC is 

𝑦(𝑥, 𝑡) = ∑ 𝑦𝑛(𝑥, 𝑡) = ∑ sin(𝑛𝜋𝑥) ⋅ (𝑐𝑛 cos(10𝑛𝜋𝑡) + 𝑑𝑛 sin(10𝑛𝜋𝑡)). 
𝑛=1 𝑛=1 

Step 4. Use the IC to determine the values of the coefficients. 

𝑦(𝑥, 0) = ∑ 𝑐𝑛 sin(𝑛𝜋𝑥) = 0 on [0, 1] 

So the coefficients 𝑐𝑛 = 0 for all 𝑛. 
Using the other IC: 

𝑦𝑡(𝑥, 0) = ∑ sin(𝑛𝜋𝑥) ⋅ 𝑑𝑛10𝑛𝜋 = 𝑥. 
That is, we have a Fourier sine series for 𝑓(𝑥) = 𝑥 on [0, 1] with the coefficients written in 
a slightly messy way. 
You can compute that the sine series for 𝑓(𝑥) = 𝑥 on [0,1] is 

∞ 2(−1)𝑛+1
𝑓(𝑥) = 𝑥 = ∑ sin(𝑛𝜋𝑥). 𝑛𝜋 𝑛=1 

Thus, 
∞ (−1)𝑛+12(−1)𝑛+1

∑ sin(𝑛𝜋𝑥) ⋅ 𝑑𝑛10𝑛𝜋 = 𝑥 = ∑ ⇒ 𝑑𝑛 =𝜋𝑛 5𝜋2𝑛2
1 

Putting it together, 
∞ (−1)𝑛+1

𝑦(𝑥, 𝑡) = ∑ sin(10𝑛𝜋𝑡) sin(𝑛𝜋𝑥). 5𝜋2𝑛2
1 
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Topic 27. Qualitative behavior of linear systems. 

Solutions 
27.1. (a) Solution: This is easy to solve: we find 

[𝑥(𝑡)
𝑦(𝑡)] 𝑥 = 𝑐1𝑒−𝑡 [1

0] + 𝑐2𝑒−2𝑡 [1
0] or 𝑥(𝑡) = 𝑐1𝑒−𝑡, 𝑦 = 𝑐2𝑒−2𝑡. 

The modal solutions 𝑐1𝑒−𝑡 [1
0] and 𝑐2𝑒−2𝑡 [1

0] have trajectories that are straight rays heading 

towards the origin. 
Because both eigenvalues are negative, every trajectory goes asymptotically to the origin. 
The trajectories approach the origin asymptotically tangent to the mode with eigenvalue 
-1. In the other direction (as 𝑡 → −∞) they become asymptotically parallel to the mode 
with eigenvalue -2. 
Here is a phase portrait. The direction is indicated by the arrows showing the vector field. 

The critical point is a nodal sink. It is dynamically asymptotically stable. 
(b) Solution: The only change would be the direction of increasing time. All the arrows 
should be reversed. 
The critical point is a nodal source. It is dynamically unstable. 

27.2. (a) Solution: Coefficient matrix: 𝐴 = [2 −3
1 −2]. 

2 − 𝜆 −3Characteristic equation: ∣ ∣ = 𝜆2 − 1 = 0. So, 𝜆 = ±1.1 −2 − 𝜆 

One positive and one negative eigenvalue implies the critical point is a saddle. It’s easy to 
find basic eigenvectors (basis of Null(𝐴 − 𝜆𝐼)): 

−3𝜆 = 1: 𝐴 − 𝜆𝐼 = [1 
−3], so take v = [3

1].1 

−3𝜆 = −1: 𝐴 − 𝜆𝐼 = [3 
−1], so take v = [1

1].1 

The phase portrait is below. 
The equilibrium at the origin is dynamically unstable. 
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Problem 2a: saddle Problem 2b: nodal source Problem 2c: nodal sink 

0(b) Solution: Coefficient matrix: 𝐴 = [2 
1].3 

The eigenvalues are the diagonal entries: 𝜆 = 2, 1. 
Positive distinct eigenvalues imply the critical point is a nodal source. It’s easy to compute 
eigenvectors: 

𝜆 = 2: 𝐴 − 𝜆𝐼 = [0 
−1], so take v = [1

3
0 

3]. 

0𝜆 = 1: 𝐴 − 𝜆𝐼 = [1 
0], so take v = [0

1].3 

The phase portrait is above. 
The equilibrium at the origin is dynamically unstable. 

(c) Solution: Coefficient matrix: 𝐴 = [−2 −2
−1 −3]. 

Characteristic equation: 𝜆2 + 5𝜆 + 4 = 0. So, 𝜆 = −1, −4. 
Negative distinct eigenvalues imply the critical point is a nodal sink. It’s easy to compute 
eigenvectors: 

−2𝜆 = −1: 𝐴 − 𝜆𝐼 = [−1 
−2], so take v = [ 

2
−1 −1]. 

𝜆 = −4: 𝐴 − 𝜆𝐼 = [ 2 
1 ], so take v = [1

−1
−2 

1]. 

The phase portrait is above. 
The equilibrium at the origin is dynamically stable. 

(d) Solution: Coefficient matrix: 𝐴 = [1 −2
1 1 ]. 

Characteristic equation: 𝜆2 − 2𝜆 + 3 = 0. So, 𝜆 = 1 ± 
√

2 𝑖. 
Complex eigenvalues with positive real parts imply the critical point is a spiral source. The 
positive entry in the lower left of the matrix implies the spirals turn counterclockwise. The 
phase portrait is below. 
The equilibrium at the origin is dynamically unstable. 
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Problem 2d: spiral source (CCW) Problem 2e: center (CW) 

(e) Solution: Coefficient matrix: 𝐴 = [ 1 1
−2 −1]. 

Characteristic equation: 𝜆2 + 1 = 0. So, 𝜆 = ±𝑖. 
Pure imaginary eigenvalues imply the critical point is a center. The -2 entry in the lower 
left of the matrix implies the loops turn clockwise. The phase portrait is above. 
The equilibrium at the origin is an edge case in terms of dynamic stability. 

27.3. (a) Solution: To find the companion system, we let 𝑦 = 𝑥′ . The companion 
system is 

[𝑥′ 0 1
𝑦′] = [−𝑘/𝑚 −𝑏/𝑚] [𝑥

𝑦] 

0 1(b) Solution: The companion matrix is [ 0]. This has characteristic equation −𝑘/𝑚 

𝜆2 + 𝑘/𝑚 = 0. This has roots 𝜆 = ±√𝑘/𝑚 𝑖. Pure imaginary eigenvalues indicate the 
critical point at the origin is a center. 
We call this an edge case or dynamically marginally stable. 

(c) Solution: The eigenvalues are 𝜆 = −𝑏±
√

𝑏2−4𝑚𝑘 . Since 𝑏 is small relative to 𝑚 and 𝑘,2𝑚 
the eigenvalues are complex with negative real parts. This means the citical point at the 
origin is a spiral sink. This is a dynamically stable equilibrium. 
Looking at the coefficient matrix, the −𝑘/𝑚 in the lower left tells us the spirals turn in a 
clockwise direction. 
(d) Solution: The eigenvalues are 𝜆 = −𝑏±

√
𝑏2−4𝑚𝑘 . Since 𝑏 is large relative to 𝑚 and 𝑘,2 

the eigenvalues are real and negative. This means the citical point at the origin is a nodal 
sink. This is a dynamically stable equilibrium. 
(e) Solution: No! The determinant of the matrix is 𝑘/𝑚, which is positive. Saddles 
have a negative determinant. Said differently, we know the eigenvalues are either real and 
negative or complex. This means the critical point can’t have one positive and one negative 
eigenvalue. 
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Topic 28. Qualitative behavior of nonlinear systems. 

Solutions 
28.1. (a) Solution: Critical points are where 𝑥′ = 0 and 𝑦′ = 0. 
𝑥2 − 𝑦2 = 0 ⇒ 𝑥 = ±𝑦. 
𝑥 − 𝑥𝑦 = 𝑥(1 − 𝑦) = 0 ⇒ 𝑥 = 0 or 𝑦 = 1. 
Thus the critical points are (0, 0), (1, 1), (−1, 1). 
(b) Solution: Critical points are where 𝑥′ = 0 and 𝑦′ = 0. 
1 − 𝑥 + 𝑦 = 0 ⇒ 𝑦 = 𝑥 − 1. Substituting for 𝑦 in the second equation gives 𝑦 + 2𝑥2 = 
𝑥 − 1 + 2𝑥2 = 0. This factors giving 𝑥 = 1/2 or 𝑥 = −1. 
Thus the critical points are (1/2, −1/2), (−1, −2). 

28.2. (a) Solution: The companion system has 𝑦 = 𝑥′ . So, 
𝑥′ = 𝑦 

𝑦′ = −𝑥 − 𝑎(𝑥2 − 1)𝑦. 
For the critical points, the first equation shows 𝑦 = 0. Using this in the second shows 
−𝑥 = 0. Thus the only critical point is (0, 0). 
(b) Solution: The companion system has 𝑦 = 𝑥′ . So, 

𝑥′ = 𝑦 

𝑦′ = 𝑥2 + 𝑦 − 1. 
For the critical points, the first equation shows 𝑦 = 0. Using this in the second shows 𝑥2 = 1 
or 𝑥 = ±1. Thus the critical points are (1, 0), (−1, 0). 

28.3. (a) Solution: The vector field associated with the original autonomous system is 

[𝑓(𝑥, 𝑦)
𝑔(𝑥, 𝑦)]. The new system’s vector field is just the negative of this. Thus all the trajectories 

are the same, except the arrows are reversed. 
The figures below illustrate this. The system on the right simply reverses the direction of 
the vector field and trajectories. 

Left: 𝑥′ = 𝑓(𝑥, 𝑦), 𝑦′ = 𝑔(𝑥, 𝑦), right: 𝑥′ = −𝑓(𝑥, 𝑦), 𝑦′ = −𝑔(𝑥, 𝑦) 
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(b) Solution: The vector field [−𝑓
𝑔 ] is orthogonal to [𝑓

𝑔]. Thus the trajectories of the 

new system are everywhere orthogonal to those of the original system. 

−1.5 −0.5 0.5 1.5

−
1.

5
−

0.
5

0.
5

1.
5

Orthogonal trajectories 

28.4. (a) Solution: This is just a way of saying that autonomous systems are time 
invariant. We will go through the proof of this carefully. It is mostly an exercise in taking 
care with the names of things. 
First, by assumption 𝑥′(𝑡) = 𝑓(𝑥(𝑡), 𝑦(𝑡)) and 𝑦′(𝑡) = 𝑔(𝑥(𝑡), 𝑦(𝑡)). 
This is true for any value of the argument 𝑡. In particular, if we replace 𝑡 by 𝑡 − 𝑡0 this 
becomes 

𝑥′(𝑡 − 𝑡0) = 𝑓(𝑥(𝑡 − 𝑡0), 𝑦(𝑡 − 𝑡0)) and 𝑦′(𝑡 − 𝑡0) = 𝑔(𝑥(𝑡 − 𝑡0), 𝑦(𝑡 − 𝑡0)). (1) 

With the help of Equation 1 we get 

𝑥′̃(𝑡) = ̃ ̃𝑑𝑡 
𝑑 𝑥(𝑡 − 𝑡0) = 𝑥′(𝑡 − 𝑡0) = 𝑓(𝑥(𝑡 − 𝑡0), 𝑦(𝑡 − 𝑡0)) = 𝑓(𝑥(𝑡), 𝑦(𝑡)) 

𝑦′̃(𝑡) = ̃ ̃𝑑𝑡 
𝑑 𝑦(𝑡 − 𝑡0) = 𝑦′(𝑡 − 𝑡0) = 𝑔(𝑥(𝑡 − 𝑡0), 𝑦(𝑡 − 𝑡0)) = 𝑔(𝑥(𝑡), 𝑦(𝑡)). 

We’ve shown that (𝑥,̃ 𝑦)̃ is a solution. QED 

Shifting by 𝑡0 does not change the trajectory. It merely changes the time the trajectory 
passes through each of its points. That is, the relationship between the trajectories is that 
they are the same with different initial points. 
(b) Solution: First, suppose we have two trajectories that intersect at a point (𝑎, 𝑏). The 
problem asks us to show that the trajectories are the same. 
Call the two solutions (𝑥1(𝑡), 𝑦1(𝑡)) and (𝑥2(𝑡), 𝑦2(𝑡)). By assumption, there are values 𝑡1 

and 𝑡2 such that (𝑥1(𝑡1), 𝑦1(𝑡1)) = (𝑥2(𝑡2), 𝑦2(𝑡2)) = (𝑎, 𝑏). 
Using Part (a), we have two time shifted solutions 

(𝑥1̃ (𝑡), 𝑦1̃ (𝑡)) = (𝑥1(𝑡 + 𝑡1), 𝑦1(𝑡 + 𝑡1)) and (𝑥2̃ (𝑡), 𝑦2̃ (𝑡)) = (𝑥2(𝑡 + 𝑡2), 𝑦2(𝑡 + 𝑡2)). 
At 𝑡 = 0 we have 

(𝑥1̃ (0), 𝑦1̃ (0)) = (𝑥1(𝑡1), 𝑦1(𝑡1)) = (𝑎, 𝑏) 

(𝑥2̃ (0), 𝑦2̃ (0)) = (𝑥2(𝑡2), 𝑦2(𝑡2)) = (𝑎, 𝑏) 

This shows that (𝑥1̃ , 𝑦1̃ ) and (𝑥2̃ , 𝑦2̃ ) are both solutions satisfying the same initial condition. 
Therefore, by the existence and uniqueness theorem they must be the same solution. 
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Since the solutions are the same, so are their trajectories. But these are also the trajectories 
of the original (unshifted) solutions. That is, if the trajectories of (𝑥1, 𝑦1) and (𝑥2, 𝑦2) have 
a single point in common, then they are the same trajectory. This is what we were supposed 
to show. 

28.5. Solution: Let 𝑓(𝑥, 𝑦) = 𝑥 − 𝑦 + 𝑥𝑦 and 𝑔(𝑥, 𝑦) = 3𝑥 − 2𝑦 − 𝑥𝑦. Clearly 𝑓(0, 0) = 0 
and 𝑔(0, 0) = 0, so (0, 0) is a critical point. The linearization at (0, 0) is 

[𝑢
𝑣′

′
] = [𝑓𝑥(0, 0) 𝑓𝑦(0, 0) −1

𝑔𝑥(0, 0) 𝑔𝑦(0, 0)] [𝑢
𝑣] = [3

1 
−2] [𝑢

𝑣] . 

−1 ± 
√

3 𝑖 The characteristic equation is 𝜆2 + 𝜆 + 1 = 0. This has roots .2 
Complex roots with negative real part mean the critical point is a linearized spiral sink. A 
spiral sink is dynamically stable. 
In the figure, we are zoomed in around the origin. The phase portrait does not look like 
spirals away from the origin. 

x

y

Note: Since the linearized spiral sink is structurally stable, the nonlinear system also looks 
like a spiral sink near the critical point. This means our sketch is qualitatively correct near 
the critical point. 

28.6. Solution: Let 𝑓(𝑥, 𝑦) = 𝑥 + 2𝑥2 − 𝑦2 and 𝑔(𝑥, 𝑦) = 𝑥 − 2𝑦 − 𝑥3. Clearly 𝑓(0, 0) = 0 
and 𝑔(0, 0) = 0, so (0, 0) is a critical point. The linearization at (0, 0) is 

[𝑢
𝑣′

′
] = [𝑓𝑥(0, 0) 𝑓𝑦(0, 0) 0

𝑔𝑥(0, 0) 𝑔𝑦(0, 0)] [𝑢
𝑣] = [1

1 
−2] [𝑢

𝑣] . 

This is a triangular matrix. It’s eigenvalues are 1 and -2. 
Real roots, one positive and one negative, means the critical point is a linearized saddle. A 
saddle is dynamically unstable. 
For more accurate sketching, we find eigenvectors: It is easy to compute that 𝜆 = 1 has an 

eigenvector [3
1] and 𝜆 = −2 has eigenvector [0

1]. 
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x

y

Note: Since the linearized saddle is structurally stable, the nonlinear system also looks like 
a saddle near the critical point. This means our sketch is qualitatively correct near the 
critical point. 

28.7. Solution: Let 𝑓(𝑥, 𝑦) = 2𝑥+𝑦 +𝑥𝑦3 and 𝑔(𝑥, 𝑦) = 𝑥 − 2𝑦 − 𝑥𝑦. Clearly 𝑓(0, 0) = 0 
and 𝑔(0, 0) = 0, so (0, 0) is a critical point. The linearization at (0, 0) is 

[𝑢
𝑣′

′
] = [𝑓𝑥(0, 0) 𝑓𝑦(0, 0) 1

𝑔𝑥(0, 0) 𝑔𝑦(0, 0)] [𝑢
𝑣] = [1

2 
−2] [𝑢

𝑣] . 

The characteristic equation is 𝜆2 − 5 = 0. This has roots ±
√

5. 
Real roots, one positive and one negative, means the critical point is a linearized saddle. A 
saddle is dynamically unstable. 
For more accurate sketching we find eigenvectors: It is easy to compute that 𝜆 = 

√
5 has

1 2 an eigenvector [−2 + 
√

5] ≈ [ 
1 

−2 − 
√

5] ≈ [−4
1 ].1/4] and 𝜆 = −

√
5 has eigenvector [ 

x

y

Note: Since the linearized saddle is structurally stable, the nonlinear system also looks like 
a saddle near the critical point. This means our sketch is qualitatively correct near the 
critical point. 

28.8. Solution: As usual, let 𝑓(𝑥, 𝑦) = 1 − 𝑦 and 𝑔(𝑥, 𝑦) = 𝑥2 − 𝑦2. 
(i) The critical points are the solutions to 

𝑓(𝑥, 𝑦) = 1 − 𝑦 = 0 

𝑔(𝑥, 𝑦) = 𝑥2 − 𝑦2 = 0. 

The top equation gives 𝑦 = 1. Putting this into the bottom equation shows 𝑥 = ±1. The 
critical points are (1, 1), (−1, 1). 
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𝑓𝑦] = [ 0 −1(ii) We linearize around each critical point. The Jacobian is 𝐽(𝑥, 𝑦) = [𝑓𝑥
𝑔𝑥 𝑔𝑦 2𝑥 −2𝑦]. 

We examine each critical point in turn. 
Critical point (1,1): 

𝐽(1, 1) = [0 −1
2 −2]. 

Characteristic equation: 𝜆2 + 2𝜆 + 2 = 0. Eigenvalues 𝜆 = −1 ± 𝑖. 
This is a linearized spiral sink. Looking at the point (𝑢, 𝑣) = (1, 0), we compute the tangent 
vector 

[𝑢′ −1
−2] [1

0] = [0
2] . 𝑣′] = [0

2 

Since this points upward, the spiral is counterclockwise. 
Critical point (-1,1): 

𝐽(−1, 1) = [ 
0 −1

−2 −2]. 

Characteristic equation: 𝜆2 + 2𝜆 − 2 = 0. Eigenvalues 𝜆 = −1 ± 
√

3. 
This is a linearized saddle. In order to sketch the trajectories near the critical point, we 
also find the eigenvectors. (We don’t show the calculation.) 

1𝜆 = −1 + 
√

3 (positive): Eigenvector v = [1 − 
√

3] . 

𝜆 = −1 − 
√

3 (negative): Eigenvector v = [1 + 
1√

3] . 

(iii) Here is the sketch. At each critical point the axes are labeled as 𝑢 and 𝑣. Some 
trajectories near the critical points are drawn in orange. We also show the tangent vector 
used to determine the sense of the spirals. These are ‘tied’ together with trajectories drawn 
in blue. 

Note: Since each of the critical points is structurally stable, the nonlinear system is quali-
tatively like the linearized ones near the critical points. 

28.9. Solution: (i) Critical points: 
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𝑓(𝑥, 𝑦) = 𝑥 − 𝑥2 − 𝑥𝑦 = 𝑥(1 − 𝑥 − 𝑦) = 0 ⇒ 𝑥 = 0 or 1 − 𝑥 − 𝑦 = 0. 
𝑔(𝑥, 𝑦) = 3𝑦 − 𝑥𝑦 − 2𝑦2 = 𝑦(3 − 𝑥 − 2𝑦) = 0. 
The top equation implies 𝑥 = 0 or 1 − 𝑥 − 𝑦 = 0, i.e., 𝑥 = 1 − 𝑦 

First assume 𝑥 = 0. Substituting this into the bottom equation: 𝑦(3 − 2𝑦) = 0. So, 𝑦 = 0 
or 𝑦 = 3/2. We have found two critical points: (0, 0) and (0, 3/2). 
Next, assume 1 − 𝑥 − 𝑦 = 0. Combining this with the bottom equation gives two more 
critical points: (1, 0) and (−1, 2). 

𝑓𝑦] = [1 − 2𝑥 − 𝑦 −𝑥 (ii) We linearize around each critical point. The Jacobian is 𝐽(𝑥, 𝑦) = [𝑓𝑥
𝑔𝑥 𝑔𝑦 −𝑦 3 − 𝑥 − 4𝑦]. 

We examine each critical point in turn. 
0Critical point (0,0): 𝐽(0, 0) = [1 
3]. This is diagonal, so the eigenvalues are 1, 3. This is 0 

a linearized nodal source. 

Critical point (0, 3/2): 𝐽(0, 3/2) = [−1/2 0 This is triangular, so the eigenvalues are−3/2 −3]. 

−1/2 and −3. This is a linearized nodal sink. 
−1Critical point (1, 0): 𝐽(1, 0) = [−1 
2 

]. This is triangular, so the eigenvalues are −1 and0
2. This is a linearized saddle. To help sketching we find the eigenvectors. (We don’t show 
the arithmetic.) 

𝜆 = −1: Can take v = [1
0] 

𝜆 = 2 : Can take v = [ 
1

−3]. 

1Critical point (−1, 2): 𝐽(−1, 2) = [ 
1 

−4]. This has characteristic equation is 𝜆2 + 3𝜆 − 

−3 ± 
−2√

172 = 0. The eigenvalues are 𝜆 = .2 
This is a linearized saddle. To help sketching we find the eigenvectors. (We don’t show the 
arithmetic.) 

𝜆 = (−3 + 
√

17)/2: Can take v = [ 
1 

(−5 + 
√

17)/2] 

𝜆 = (−3 − 
√

17)/2: Can take v = [ 
1 

(−5 − 
√

17)/2] 

(iii) Here is the sketch. Near the linearized nodes we just show trajectories heading towards 
the critical point (sink) or away from it (source). The trajectories near the critical points 
are drawn in orange. These are ‘tied’ together with trajectories drawn in blue. 
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Note: Since each of the critical points is structurally stable, the nonlinear system is quali-
tatively like the linearized ones near the critical points. 
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Topic 29. Structural stability. 

Solutions 
4 − 2𝑥𝑦 29.1. (a) Solution: The Jacobian for this system is 𝐽(𝑥, 𝑦) = [ −1 − 𝑦2 

−2 + 2𝑥𝑦 1 + 𝑥2 ]. 

4So, 𝐽(0, 0) = [−1 
1]−2 

The characteristic equation is 𝜆2 + 7 = 0, so 𝜆 = ±
√

7𝑖. 
This is a linearized center (pure imaginary eigenvalues). As an equilibrium a center is an 
edge case in terms of dynamic stability. As a system it is not structurally stable. 
The nonlinear system could have a center, spiral sink or spiral source at the origin. Since 
one of these is a dynamically stable equilibrium and one is unstable, we don’t know if the 
nonlinear equilibrium is dynamically stable or not. 
Here are possible phase portraits near (0,0). The direction of rotation is clockwise –because 
the lower left entry in 𝐽(0, 0) is negative. 

x

y

x

y

x

y

Possible nonlinear phase portraits near a linearized center. 

(b) Solution: The Jacobian for this system is 𝐽(𝑥, 𝑦) = [ 
−2 + 2𝑥 −1 So,1 + 3𝑦 + 2𝑥 −4 + 3𝑥]. 

𝐽(0, 0) = [−2 −1
1 −4]. 

The characteristic equation is 𝜆2 + 6𝜆 + 9 = 0, so 𝜆 = −3, −3. 
This is a linearized defective nodal sink (repeated negative eigenvalues). As an equilibrium 
a defective nodal sink is dynamically stable. As a system it is not structurally stable. 
In principle, the nonlinear system could have a defective nodal sink, nodal sink or spiral sink 
at the origin. Since all of these are dynamically stable equilibria, the nonlinear equilibrium 
at (0,0) is dynamically stable. 
Because the linearization is only valid close to the equilibrium, it doesn’t really make sense 
to worry about which type we have. We draw just one portrait with a sink near (0,0). 
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Nonlinear phase near linearized defective nodal sink. 

29.2. (a) Solution: First we find the critical points. The equations are 

𝑥′ = 𝑦 = 0 

𝑦′ = 𝑥(1 − 𝑥) = 0 

These are straightforward to solve. The critical points are (0, 0) and (1, 0). 
0 1The Jabobian is [ 0]1 − 2𝑥 

At (0, 0): 𝐽(0, 0) = [0 1
1 0]. 

The characteristic equation is 𝜆2 − 1 = 0. So, 𝜆 = ±1. 
This is a linearized saddle (one positive, one negative eigenvalue). It is a structurally stable 
system. That is, the nonlinear system is qualitatively a saddle near (0, 0). 
To aid in sketching we find the eigenvectors. (We leave the computation to the reader.) 

For 𝜆 = 1 we can take v = [1
1]. For 𝜆 = −1, take v = [−1

1 ]. 

At (1, 0): 𝐽(1, 0) = [ 
0 1

−1 0]. 

The characteristic equation is 𝜆2 + 1 = 0. So, 𝜆 = ±𝑖. 
This is a linearized center (pure imaginary roots). It is not structurally stable. The nonlinear 
system could have a center, spiral sink or spiral source at the (1, 0). 
Here are three possible phase portraits for this system. The origin is always a saddle. The 
critical point at (1, 0) is alternately a center, spiral source, spiral sink. 
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Three possible phase portraits. 
Notes. For this system we can show (with more work) that the critical point at (1, 0) is a 
nonlinear center. 
To draw the above portraits we actually used the system 𝑥′ = 𝑦, 𝑦′ = 𝑥(1 − 𝑥) + 𝑎 ∗ 
sign(𝑦) ∗ |𝑦|1.1, with 𝑎 = 0, 0.36, −0.36. When 𝑎 = 0, this system is identical to the one 
in the problem. For other 𝑎, it has the exact same critical points and linearizations as the 
original systems. A nicer system with the same properties uses 𝑦′ = 𝑥(1 − 𝑥) + 𝑎𝑦3. But 
this system is a numerically a little harder to work with. 
(b) Solution: First we find the critical points. The equations are 

𝑥′ = 𝑥2 − 𝑥 + 𝑦 = 0 

𝑦′ = −𝑦𝑥2 − 𝑦 = −𝑦(𝑥2 + 1) = 0 

The second equation implies 𝑦 = 0. Putting this into the first equation, we get 𝑥 = 0, 1. So 
the critical points are (0, 0) and (1, 0). 

The Jabobian is [2𝑥 − 1 1
−2𝑥𝑦 −𝑥2 − 1] 

At (0, 0): 𝐽(0, 0) = [−1 1
0 −1]. 

This has repeated negative roots, 𝜆 = −1, −1. 
The critical point is a linearized defective nodal source. It is not structurally stable. The 
nonlinear system could be some type of nodal sink or a spiral sink at the origin. The good 
news is that we are sure it’s a sink. 

At (1, 0): 𝐽(1, 0) = [1 1
0 −2]. 

This has eigenvalues 𝜆 = 1, −2. So it is a linearized saddle. Since a saddle is structurally 
stable, the nonlinear system is qualitatively a saddle near (1, 0). 
To aid in sketching we find the eigenvectors. (We leave the computation to the reader.) 

For 𝜆 = 1 we can take v = [1
0]. For 𝜆 = −2, take v = [−1

3 
]. 

Here are three possible phase portraits for this system. Two have nodal sinks at the origin. 
The third has a spiral sink. The critical point at (1, 0) is always a saddle. 
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Three possible phase portraits. 
Notes. For this system we can show that the critical point at (0, 0) is a nonlinear node. To 
see this, note that when 𝑦 = 0, we get trajectories that stay on the 𝑥-axis. Since trajectories 
can’t cross, there is no way for another trajectory to spiral around the origin. 
To draw the above portraits, we actually used the system 𝑥′ = 𝑥2 − 𝑥 + 𝑦, 𝑦′ = 𝑥2 −
𝑥 + 𝑦 + 𝑎(𝑥2(𝑥 − 1)2)0.55, with 𝑎 = 0, 1.0, −0.5. When 𝑎 = 0, this system is identical to 
the one in the problem. For the other values of 𝑎, it has the exact same critical points and 
linearizations as the original system. A nicer looking system with the same properties uses
𝑦′ = 𝑥2 −𝑥+𝑦 +𝑎𝑥2(𝑥−1)2. But this system is a numerically a little harder to work with. 

https://1)2)0.55
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Topic 30. Systems: population models 

Solutions 
30.1. Solution: The new system is 

𝑥′ = 4
5𝑎𝑥 − 𝑝𝑥𝑦 

𝑦′ = −𝑏𝑦 + 𝑞𝑥𝑦, 

The critical point for the old system is 

(𝑏 𝑎 
𝑝 

) . 𝑞 
, 

The critical point for the new system is 

(𝑏 5𝑎/4
𝑝 

) . 𝑞 
, 

The effect of fertilizer is to leave the equilibrium flower population the same, but to increase 
the borer population by 25%. It does not seem like a good idea! 

30.2. Solution: Original equations: 

sharks: 𝑥′=𝑎𝑥 − 𝑝𝑥𝑦 

fish: 𝑦′= − 𝑏𝑦 + 𝑞𝑥𝑦. 

The original equilibrium is (sharks, fish) = (𝑞
𝑏 , 𝑎𝑝 ). 

With warming: 

𝑥′ = (𝑎 − 0.1)𝑥 − 𝑝𝑥𝑦 

𝑦′ = −(𝑏 + 0.1)𝑦 + 𝑞𝑥𝑦 

(𝑏+0.1 𝑎−0.1The new equilibrium is (sharks, fish) = 𝑞 , 𝑝 ). So the equilibrium level of sharks 
increases. (And that of fish decreases.) 

30.3. Solution: The Jacobian of the system is 𝐽(𝑥, 𝑦) = [39 − 6𝑥 − 3𝑦 −3𝑥 
−4𝑦 28 − 2𝑦 − 4𝑥]. 

[39 0(a) 𝐽(0, 0) = This is a diagonal matrix, so the eigenvalues are the diagonal0 28]. 

entries: 𝜆 = 39, 28. Positive real eigenvalues imply the linearized critical point is a nodal 
source. This is structurally stable, so the nonlinear critical point is also a nodal source. 

[−39 −39(b) 𝐽(13, 0) = This is triangular, so the eigenvalues are just the diagonal 0 −24]. 

entries: 𝜆 = −39, −24. Negative eigenvalues imply the linearized critical point is a nodal 
sink. This is structurally stable, so the nonlinear critical point is also a nodal sink. 
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(c) 𝐽(0, 28) = [ 
−45 0 This is triangular, so the eigenvalues are just the diagonal −112 −28]. 

entries: 𝜆 = −45, −28. Negative eigenvalues imply the linearized critical point is a nodal 
sink. This is structurally stable, so the nonlinear critical point is also a nodal sink. 

[−15 −15(d) 𝐽(5, 8) = The characteristic equation is 𝜆2 + 23𝜆 − 360 = 0. This−32 −8 ]. 

−23 ± 
√

232 + 4 ⋅ 360has eigenvalues . That is, it has one positive and one negative eigen-2
value. Therefore, the linearized critical point is a saddle. This is structurally stable, so the 
nonlinear critical point is also a saddle. 
Note: We could also have identified this as a saddle because its determinant is negative. 

30.4. Solution: (a) If 𝑦(𝑡) = 0, then 𝑥′ = 𝑥2 − 2𝑥. This has critical points 𝑥 = 0, 2 and 
phase line 

0 2 

So, without any predator (𝑦(𝑡) = 0), the prey population 𝑥 will either crash to 0 or boom 
to infinity –at least according to this model. 
The answer is the same for 𝑦(𝑡) if 𝑥(𝑡) = 0. 
(b) Again we can factor to find the critical points. 

𝑥′ = 𝑥(𝑥 − 2 − 𝑦) = 0 ⇒ 𝑥 = 0 or 𝑥 − 2 − 𝑦 = 0 

𝑦′ = 𝑦(𝑦 − 4 + 𝑥) = 0 ⇒ 𝑦 = 0 or 𝑦 − 4 − 𝑥 = 0. 

First let 𝑥 = 0, then 𝑦 = 0 or 𝑦 = 4: two critical points (0,0), (0,4). 
Next let 𝑦 = 0, then 𝑥 = 0 or 𝑥 = 2: one more critical point (2,0). 
Finally, solve 𝑥 − 2 − 𝑦 = 0, 𝑦 − 4 − 𝑥 = 0: one more critical (3,1). 

−𝑥 The Jacobian is 𝐽(𝑥, 𝑦) = [2𝑥 − 2 − 𝑦 
2𝑦 − 4 + 𝑥]. Looking at each critical point in turn 𝑦 

we get 

0𝐽(0, 0) = [−2 
−4] ⇒ 𝜆 = −2, −4. Negative eigenvalues imply this is a linearized nodal 0 

sink. This is structurally stable so the nonlinear critical point is also a nodal sink. 

𝐽(0, 4) = [−6 0 ⇒ 𝜆 = −6, 4. One positive and one negative eigenvalue imply this 4 4] 

is a linearized saddle. This is structurally stable so the nonlinear critical point is also a 
saddle. 

𝐽(2, 0) = [2 −2 ⇒ 𝜆 = 2, −2. One positive and one negative eigenvalue imply this 0 −2] 

is a linearized saddle. This is structurally stable so the nonlinear critical point is also a 
saddle. 

−3𝐽(3, 1) = [3 
1 

].1 

Characteristic equation: 𝜆2 −4𝜆+6 = 0 ⇒ 𝜆 = 2±
√

2 𝑖 Complex eigenvalues with positive 



73 TOPIC 30. SYSTEMS: POPULATION MODELS 

real part imply this is a linearized spiral source. This is structurally stable so the nonlinear 
critical point is also a spiral source. 
(c) Here is the phase portrait. Since we’re talking about populations, the portrait only 
shows the first quadrant. 

What seems important, is that each population by itself is modeled by a doomsday-extinction 
equation. That is, either the population goes to ∞ or to 0. It’s hard to tell exactly, but it 
seems that when the predator (𝑦) goes to infinity, the prey (𝑥) goes extinct. 

30.5. Solution: (a) In the presence of 𝑦, the growth rate of 𝑥 decreases. In the presence 
of 𝑥, the growth rate of 𝑦 increases. Thus 𝑥 is the prey population and 𝑦 the predator 
population. 
(b) Without prey, i.e., when 𝑥 = 0, the DE for 𝑦 is 𝑦′ = −𝑦. This is exponential decay. So 
eventually the predator population would go to 0. 
Without predators, the equation for the prey becomes 𝑥′ = 4𝑥 − 𝑥2. This is the logistic 
equation with dynamically stable critical point 𝑥 = 4 and dynamically unstable critical 
point 𝑥 = 0. The prey population would eventially stabilize at 4. 
(c) We can factor each of the equations to find the critical points: 

𝑥′ = 𝑥(4 − 𝑥 − 𝑦) = 0 ⇒ 𝑥 = 0 or 4 − 𝑥 − 𝑦 = 0 

𝑦′ = 𝑦(−1 + 𝑥) ⇒ 𝑦 = 0 or 𝑥 = 1. 

The critical points are (0, 0), (4, 0), (1, 3). 

The Jacobian is 𝐽(𝑥, 𝑦) = [4 − 2𝑥 − 𝑦 −𝑥 
𝑦 −1 + 𝑥]. 

Considering each of the critical points in turn: 

𝐽(0, 0) = [4 0 ⇒ 𝜆 = 4, −1.0 −1] 
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One positive and one negative eigenvalue imply this is a linearized saddle. This is struc-
turally stable, so the nonlinear critical point is also a saddle. 

𝐽(4, 0) = [−4
0 

−4
3 ] ⇒ 𝜆 = −4, 3. 

One positive and one negative eigenvalue imply this is a linearized saddle. This is struc-
turally stable, so the nonlinear critical point is also a saddle. 

−1𝐽(1, 3) = [−1 
0 

].3 

Characteristic equation: 𝜆2 + 𝜆 + 3 = 0 ⇒ 𝜆 = −1 ± 
√

11 𝑖. 
Complex eigenvalues with negative real part imply this is a linearized spiral sink. This is 
structurally stable, so the nonlinear critical point is also a spiral sink. 
(d) Here is the phase portrait. Since we’re talking about populations, the portrait only 
shows the first quadrant. All trajectories spiral into the critical point at (2,3). (Actually, 
there are a handful of trajectories along the axes that go asymptotically to the saddle 
points.) 
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