ES.1803 Problem Section 12, Spring 2024 Solutions

Problem 25.1. Consider the following heatl equation with boundary conditions.
PDE: w,(z,t) = 4u,,(x,t), for0 <z <m, 0<t.

BC: u(0,t) =0, u(m,t) =0.

(a) Find the general solution.

Solution: Step 1. Look for separated solutions to the PDE. That is, try a solution of the
form u(x,t) = X(x)T'(t).

Substituting into the PDE gives
X"(x)  T7(t)
X(z)  4T(t)

X(z)T"(t) =4X"(x)T(t), a little algebra gives = constant = —\

(Since z and ¢ are independent variables, when a function of = equals a function of ¢, both
must be constant.)

A little more algebra gives two ordinary differential equations:

X"+2X =0 T +4XT = 0.

The equation for T has the solution T'(t) = ce 4 .

For X, the characteristic roots are r = ++v/—)\. There are 3 cases:

Case (i) A > 0: X(z) = acos(vVAx) +bsin(vV z), T(t) = ce M.

Case (ii) A\=0: X(z)=a+bz, T(t)=c

Case (iii) A < 0: Can ignore this case. It never produces nontrivial modal solutions. (For
the record X(z) = ae¥V*® + be VA7)

Step 2. Modal solutions (separated solutions which also satisfy the BC)

For separated solutions, the BC are X(0) =0, X(m)=0.

(To see this: The BC u(0,t) = X(0)T'(t) = 0 implies either X(0) = 0 or T'(t) = 0. If
T(t) = 0, then u(z,t) = X(z)T(t) = 0, i.e., u is the trivial solution. So, for nontrivial
solutions, we must have X(0) = 0. Likewise, we need X(m) = 0.)

Case (i) A>0: BC: X(0)=a=0, X(r)=acos(vA7)+bsin(v/ A7) =0.
Since a = 0, the second condition becomes bsin(v/ A7) = 0. Thus, either b = 0 or
sin(v/ A7) = 0.
If b = 0, then X(z) =0 and all we have found is the trivial solution.
If sin(v/ A7) = 0, then /A = n for some integer n.
So, for A = y/n, we have found some modal solutions.
X(z) =bsin(nz) and T(t) = ce M = ce4"°t,
Multiplying these together we get u(x,t) = be sin(naz)e*‘mzt.

There is no point in having both constants in the formula, so we drop the ¢. Also, to keep
the solutions for different n separate, we add an index. Our modal solutions are

u, (z,t) = b,e "t sin(nz) forn=1,2, ..



ES.1803 Problem Section 12, Spring 2024 Solutions 2

Case (ii) A\=0: BC: X(0)=a=0, X(7m)=a+br=0.

The only solution to this is the trivial one a = 0, b = 0. So this case doesn’t add any new
modal solutions.

Case (iii) A < 0: Ignore.

(You can easily check that this case does not produce any nontrivial solutions.)

Step 3: Using superposition, we get the general solution to the PDE satisfying BC:

oo [e.e]
u(z,t) = Z u, (z,t) = Z b, e 4"t sin(nx)
n=1 n=1
(b) Now consider the initial condition (you should graph this).
' or0 <z <m/2
(10) u(z,0) = fz) =4 £ FrO=e=m
m—x form/2<x<T
Find the solution to the PDE that satisfies both the BC and the IC.
Solution: Here’s the graph of u(x,0) (the initial temperature distribution).
Y
/2

x
\ T

From the Part (a), we know the general solution to the PDE that satisfies the BC. As usual,
the IC are used to determine the values of the coefficients.

Setting t = 0 in the general solution, we get:
u(z,0) = an sin(nz) = f(r) on0<z<mw

This is a sine series for f(x). That is, b, are the Fourier sine coefficients:
2 [ .
b, = / f(z)sin(nx) dz
T Jo

We can use the table or compute this integral by parts. (You should be able to do this!)

/2 ﬂ
(/0 rsin(nz) dx + /w/2<7r — z) sin(nz) d:v)

3 o

2 xcos(nz)  sin(nx) /2 meos(nz)  xcos(nz) sin(nz)]” )
==|1|- + + |- + -

T ([ n n ]0 [ n n n :|7r/2
2 weos(nm/2) sin(nw/2) w(=1)" 7w(—1)" mwcos(nm/2) wcos(nm/2)  sin(nw/2)
o (_ 2n * n? n * n * n B 2n * n? )
_ 4sin(nm/2)

™2
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So, (since sin(n7/2) =1,0,—1,0,1 ... for n = 1,2,3,4,5,...)

e 3 sin(3z) e 1% sin(5z) e 19t sin(Tx) N )

4
t) = — —4t i — —_
u(z,t) - (e sin(x) 5 + 55 pn

(c) If this models the temperature of a heated rod, what happens to the temperature over
time? Which mode is the dominant mode?

Solution: The temperature goes to 0 over the entire rod. The first mode is the dominant
one, since it decays the slowest.

Heat equation applet: Take a look at the applet https://mathlets.org/mathlets/
heat-equation/

Problem 26.2. (a) Find the general solution to the following heat equation with inhomo-
geneous boundary conditions

PDE: w,(z,t) =4u,,(z,t), for0 <z <m, 0 <t
BC: u(0,t) =1, u(m,t) = 2.

This has inhomogeneous boundary conditions. So we will use the strategy of finding a par-
ticular solution to the above and adding the general solution to the associated homogeneous
equation. The homogeneous equation is a Topic 25 problem. Here is the solution:

oo
E b, e 4" sin(nx)

n=1

(If you haven’t solved that problem yet, you should do that now.)

Solution: Our strategy is to find the general homogeneous solution by our previous meth-
ods and then guess at a particular solution to the inhomogeneous equation.

The homogeneous equation is
(H-PDE) w(x,t) = 4u,, (x,t), for 0 <z <m 0 <t.
(H-BC) u(0,t) =0, u(m,t) =0.

We gave the homogeneous solution above. If you haven’t done this problem yet, you prob-
ably should try it now!

oo
E b, e 4" sin(nx)

n=1

For the particular solution we notice that the boundary conditions only depend on x, so
we’ll guess a steady state solution, i.e., one that doesn’t change in time:

u,(v,t) = X(z)

Substituting this into the PDE we get: 0= 4X"(z), so X(x) = a+ bx. Now matching the
inhomogeneous BC we get

1
X0)=a=1and X(m)=a+br=2 =a=1b=—.
T


https://mathlets.org/mathlets/heat-equation/
https://mathlets.org/mathlets/heat-equation/
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Our finished solution to the problem is

o0
x _An2t .
u(z,t) = u,(z,t) +up(z,t) =1+ - + 521 b,e " sin(nx)

n

(b) Find the solution that also satisfies the initial condition u(x,0) = 2.

Solution: Using the solution from Part (a), we have

w(z,0) =1+z/m+ an sin(nz) = 2

n=1
Rearranging terms we get: an sin(nz) = 1 —x/m. So the b,, are the Fourier sine
n=1
coefficients for 1 — z /7.
2 [T 2
b, = 7T/0 (1 —x/m)sin(nz) dx = —
(We'll let you look up or compute the integrals.) Thus,
2 X et gin(nx)

u(a:,t)zl-i—%-l-;z

n=1 n

Problem 25.3. (Linearity) Assume we have a heated rod of length L with its ends in
ice baths. We can model this using the heat equation with boundary conditions.

For functions uw = u(x,t), the PDE

ou 0u(z,t)
E(xﬂt) =a 92

1s the heat equation. In this problem we want to look at linearity of this equation and also
of boundary conditions.

. 0
(a) The PDE can be written as ((975 — a8x2> U=

0 0?
We can use the language of operators: The partial differential operator T = <8t — a82>
x
1s called the heat operator. The heat equation is simply

Tu=0.

Show the heat operator is linear.

Solution: Remember that showing linearity is always easy —you just have to ask the
question.

We need to show that
T(Clul + CQU’Q) == CITU1 + 627U2,
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where ¢, ¢, are constants and u,, u, are functions of (x,t). This follows easily from the
linearity of (partial) derivatives:

Acyug + cpuy)  0*(cquy + couy)
ot 0x?
0y Ouy 0%u, 0?u,
=ag e e g

e (O P (Ouy  Ou,
ot T a2 ) T2\t T a2

T (crug + coug) =

(b) Show the heat equation Tu = 0 is homogeneous. That is, if uy and uy are solutions
then so are cyuy + cous.

Solution: Again, all we have to do is ask the question. This follows by linearity

T(Clul + CQ’LLQ) == CITUI + CQTUQ == 0

(c) The boundary conditions w(0,t) =0 and u(L,t) = 0 also have solutions, i.e., functions
that satisfy the boundary conditions.

Show the boundary conditions are linear and homogeneous. That is, we can superposition
solutions and get solutions.

Solution: Assume u; and u, satisfy the boundary conditions, i.e.
uy(0,t) =0, uy (L, t) = 0, uy(0,t) =0, uy(L,t) = 0.
Let u(z,t) = cyuqy(x,t) + couy(z, t). Easily
w(0,t) = c;uq(0,t) + couqy(0,¢) =0,  and u(L,t) = cqu(L,t) + cyuqs(L, t) = 0.

This shows that the boundary conditions are linear and homogeneous.

(d) Show that the combined system of the heat equation plus the given boundary conditions
1s linear and homogeneous.

Solution: This is just about understanding what’s being asked. The computations are
trivial. A solution to the combined system is a function u(z,t) satisfying

Tu=0, u(0,t) =0, wu(L,t)=0.

Linear and homogeneous means that if u; and u, are solutions then so is ¢;u; + cyu, (for
constants ¢, ¢y). This follows directly from the previous parts of this problem.

Extra problems if time.

Problem 25.4. (This problem uses a cosine series, so the A =0 case is important.)
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(a) Solve the heat equation with insulated ends.

PDE: w, =3u,, for0 <z <1,t>0.

BC: u,(0,t) =0, u,(1,t) =0

IC: u(x,0) =x.

Solution: Step 1: Separated solutions: try u(z,t) = X (z)T(t).

Substitution gives

XT' =3X"T = = . =constant = -\ = X" 4+AX =0, T+ 3\T =0.

Case (i) A >0: X(x) = acos(vAz) + bsin(v/Az), T(t) = ce M.
Case (ii) A=0: X(z)=a+bx, T(t)=c. So, u(z,t) = (a+ bx)c,

Case (iii) A < 0: Ignore, this case never produces nontrivial modal solutions.

Step 2: Modal solutions (separated solutions which also satisfy the BC)

For separated soltions, the BC are X'(0) =0, X’(1) =0.

Case (i) A>0: BC: X'(0)=vVX =0, X'(1)=—avXsin(v/A) + VAbcos(v/ ).

The first condition gives b = 0. This implies —av/Asin(v/A) =0 = a =0 or sin(v/A) = 0.
We only get nontrivial solutions when sin(v/A) = 0, i.e., when VA = nx for n = 1,2, ....

So X (x) = acos(nmz), T(t)=e 3™t and we have found modal solutions:

—3n2n2t

u,(z,t) = a, cos(nmx)e forn=1,2,..

(We combined a and ¢ into one constant and added the index n.)
Case (ii) A\=0: BC: X'(0)=b=0and X'(1)=b=0.
So, b =0 and a = anything, i.e., X(z) = a.

So we have one more modal solution. Let’s call it .

Case (iii) A < 0: Ignore, never produces nontrivial solutions.

Step 3: Superposition gives the general solution to PDE + BC.

u(z,t) = ug(x,t) + Zun(xa t) = % + Z a,, cos(nmx)e 3 Tt

Step 4: Use the IC to determine the values of the coefficients.
IC: wu(x,0) = @720 + Zan cos(nmwz) = .

This is the cosine series for the function f(x) = x. (Note, we were clever to arrange things
so the constant term is a,/2.) The cosine series for x is the same as the Fourier series
for a scaled triangle wave. You can work out the scaling or just compute the integrals

! . —# for n odd
a, =2 | xcos(nmx)dx. Either way you get ag =1, a, =
0 0 for n even.
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Thus,

—3n2n2t

1 4 cos(nmz) e

U(.f,t):i—ﬁz n2
nodd

(b) Write out explicitly (compute values of coefficients) the first 4 nonzero terms when

t =1/32, i.e., write the first four terms of u(x,1/32). Use this to explain why, after a very

short time, the constant and n =1 term give a very good approximation of the solution.

Solution: Using a calculator:

1 4 e—277r2/32 e—257r2/32

1/32) = = — — [ ¢37°/32 _ _—
u(x,1/32) 5 3 (e cos(mz) + 9 cos(3mx) + 5% cos(bmz) + )

= 0.5 — 0.505 * cos(mx) — 3.42 x 1077 cos(3mz) — 4.58 x 10712 cos(5rx) — ....

The coefficients of the terms with n = 3 and higher are so small compared to the n = 1
term that, for ¢ > 1/32, we have the excellent approximation

467371'2t

u(x,t) ~ 0.5 — cos(mx).

Problem 25.5. Solve the wave equation with boundary and initial equations.
PDE: y, =vy,, for0<az<1, t>0.

BC: y(0,t) =0, y(1,t) =0

IC: y(z,0) =0, y,(z,0) = 1.

Solution: Step 1. Separated solutions: y(x,t) = X(x)T'(¢).

X"(x) _ T"(t)
X(x)  T()

This gives us two ordinary differential equations:

Plug into the PDE: XT” = X"T = constant = —A\.

X "+2X =0 T + XT = 0.

For X, the characteristic roots are r = +v/—\. There are 3 cases:
Case (i) A >0: X(z) = acos(v/Az) + bsin(v/Azx), T(t) = ccos(v/At) 4 dsin(v/At).
Case (ii) A\=0: X(z)=a+bzx, T(t)=c+dt.

Case (iii) A < 0: Ignore this case. (No nontrivial modal solutions.)

Step 2: Modal solutions (separated solutions which also satisfy the BC)

For separated solutions, the BC are X(0) =0, X(1)=0.

We look at each of the cases:

Case (i) A>0: BC: X(0)=a=0, X(1) = acos(v\) + bsin(v/\) = 0.

Since a = 0, the second condition becomes bsin(v/A) =0 = b= 0 or sin(v/A) = 0.
If b =0, then X (x) = 0 and all we have found is the trivial solution.
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If sin(v/A) = 0, then v/A = nr for some integer n.
So, for A = \/nm, we have

X(x) =bsin(nmz) and T(t) = ccos(nnt) 4+ dsin(nnt).

Multiplying these together we have y(x,t) = bsin(nmx)(c cos(nnt) + d sin(nnt)).

We drop the coefficient b (it’s redundant) and index the modal solutions:
Yn(x,t) = sin(nnz)(c, cos(nnt) + d, sin(nwt)) forn=1,2,..
Case (ii) A\=0: BC: X(0)=a=0, X(1)=a+b=0.

The only solution is a = 0, b = 0. Thus, we have found only the trivial solution.

Case (iii) A < 0: Ignore — only produces trivial modal solutions.

Step 3: Using superposition we, get the general solution to the PDE + BC:

y(x,t) = Z yp(x,t) = Z sin(nmz)(c,, cos(nnt) + d,, sin(nnt))

Step 4: Use the initial conditions to determine the coefficients.

IC y(z,0) =0: y(x,0) = > ¢, sin(nmz) = 0. This is a Fourier sine series for 0, i.e., all
the coefficients c,, = 0.

IC y,(x,0) =1: y,(z,0) = > nnd, sin(nmz) = 1. This is a Fourier sine series for 1 on
[0,1]. We recognize this as the Fourier series for the odd period 2 square wave. So,

. 4 sin(nmx)
== 1 = — _—
E nwd,, sin(nmz) E -

Ty odd

0 for n even 0 for n even.

4 for p odd 4 forn odd
Thatis,mrdn:{”” orne = d, =4 e

Our solution is

y(z,t) = Zdn sin(nmx) sin(nnt) = % Z

n=1 n odd

sin(nmx) sin(nmt)

n2
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