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18 Matrix exponential, exponential and sinusoidal input 

This topic is no longer on the syllabus. We post these notes for anyone who is 
interested. Since we have already covered inhomogeneous, constant coefficient, 
linear DEs and homogeneous systems, linear systems with input is not a big 
step. 

18.1 Goals 

1. Know the definition of the matrix exponential. 

2. Be able to compute the matrix exponential from eigenvalues and eigenvectors. 

3. Be able to use the matrix exponential to solve an IVP for a constant coefficient linear 
system of differential equations. 

4. Be able to derive and apply the exponential response formula for constant coefficient 
linear systems with exponential input. 

5. Be able to solve linear constant coefficient systems with sinusoidal input using complex 
replacement and the ERF. 

18.2 Introduction 

The constant coefficient system x ′ = 𝐴x has a nice conceptual solution in terms of the 
matrix exponential 𝑒𝐴𝑡. This matrix exponential is a square matrix whose derivative follows 
the usual rule for exponentials: 

𝑑𝑒𝐴𝑡 

= 𝐴𝑒𝐴𝑡.𝑑𝑡 
So, as can be checked directly, the system x ′ = 𝐴x has solution x(𝑡) = 𝑒𝐴𝑡c, where c is a 
constant vector. 
We’ll use the diagonalization 𝐴 = 𝑆Λ𝑆−1 to define the matrix exponential 𝑒𝐴𝑡. We will 
then use it to give another way of presenting the solutions to x ′ = 𝐴x. 
After that, we will turn our attention to inhomogeneous linear systems of the form 

x ′ = 𝐴x + F(𝑡). (I) 

As usual, x is a column vector of (unknown) functions, 𝐴 is a square constant matrix and the 
input F(𝑡) is a column vector. As you might expect, when F(𝑡) is exponential or sinusoidal 
we will have an exponential or sinusoidal resposnse formula. Unlike for ordinary differential 
equations, these formulas are not worth memorizing. It will turn out to be easier to rederive 
them as needed. 
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18.3 Matrix Exponential 

In 18.03 we use the exponential function all the time. Its main property is that it helps us 
solve differential equations. 
Example 18.1. Solve 𝑥′ = 𝑎𝑥 

Solution: 𝑥(𝑡) = 𝑥(0) 𝑒𝑎𝑡. 
We are going to define the matrix exponential. There are several ways to do this. Since 
this is a differential equations class, let’s define it as the solution to a DE. Then we will see 
various ways to compute and use it. 
Definition. For any square matrix 𝐴, the matrix exponential 𝑒𝐴𝑡 is the matrix of functions 
that satisfies the initial value problem 

𝑑𝐵(𝑡) = 𝐴 ⋅ 𝐵(𝑡), 𝐵(0) = 𝐼. 𝑑𝑡 
Note. We could also have defined 𝑒𝐴𝑡 using the Taylor series for 𝑒𝑥 

𝑒𝐴𝑡 = 𝐼 + 𝑡𝐴 + 
𝑡2

2
𝐴2 

+ 
𝑡3

3!
𝐴3 

+ … 

Either definition gives the same answer. 
We can now list several properties of the matrix exponential. 
1. The initial value problem x ′ = 𝐴x with initial value x(0) = b has solution 𝑒𝐴𝑡b. 

0 02. If Λ = [𝜆
0
1 

𝜆2
] then 𝑒Λ𝑡 = [𝑒𝜆

0
1𝑡 

𝑒𝜆2𝑡]. 

3. If 𝐴 = 𝑆Λ𝑆−1 is the diagonalization of 𝐴 then 

𝑒𝐴𝑡 = 𝑆𝑒Λ𝑡𝑆−1 

4. 𝑒𝐴(𝑠+𝑡) = 𝑒𝐴𝑠𝑒𝐴𝑡. 
5. Definition. 𝑒𝐴𝑡 is called a fundamental matrix for the system x ′ = 𝐴x 

Warning: Because matrix multiplication does not commute, it is not generally true that
𝑒𝐴𝑒𝐵 is the same as 𝑒𝐴+𝐵. They are the same only in special cases. 

Proofs. Here are proofs of these facts. 
1. We need to verify that x(𝑡) = 𝑒𝐴𝑡b satisfies the IVP. This follows directly from our 
definition of matrix exponential: 

𝑑𝑒𝐴𝑡b x ′(𝑡) = = 𝐴eAtb = 𝐴x(𝑡).𝑑𝑡 

2. 𝑑𝑡 
𝑑 [𝑒𝜆

0
1𝑡 

𝑒𝜆
0

2𝑡] = [𝜆1𝑒
0

𝜆1𝑡 

𝜆2𝑒
0

𝜆2𝑡] = [𝜆
0
1 

𝜆
0
2
] [𝑒𝜆

0
1𝑡 

𝑒𝜆
0

2𝑡] = Λ𝑒Λ𝑡. QED 

3. We need to show that 𝑑𝑡 
𝑑 𝑆𝑒Λ𝑡𝑆−1 = 𝐴𝑆𝑒Λ𝑡𝑆−1. We do this by computing both sides 

and seeing that they are equal: 
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Since 𝑆 is constant, the left-hand side of this equation is: 

𝑑𝑡 𝑆𝑒Λ𝑡𝑆−1 = 𝑆 𝑑𝑒Λ𝑡 

= 𝑆Λ𝑒Λ𝑡𝑆−1. 𝑑 
𝑑𝑡 𝑆−1 

Replacing 𝐴 by its diagonalization, the right hand side of the equation is: 

𝐴𝑆𝑒Λ𝑡𝑆−1 = 𝑆Λ𝑆−1𝑆𝑒Λ𝑡𝑆−1 = 𝑆Λ 𝑒Λ𝑡𝑆−1. 

The two sides are the same. QED 

4. This follows from the diagonalized form. To make the calculation explicit, we show it 
for the 2 × 2 case with eigenvalues 𝜆1, 𝜆2. 

𝑒𝐴𝑠𝑒𝐴𝑡 = 𝑆𝑒Λ𝑠𝑆−1𝑆𝑒Λ𝑡𝑆−1 = 𝑆𝑒Λ𝑠𝑒Λ𝑡𝑆−1 = 𝑆 [𝑒𝜆1𝑠 

𝑒𝜆
0

2𝑠] [𝑒𝜆1𝑡 

𝑒𝜆
0

2𝑡] 𝑆−1
0 0 

= 𝑆 [𝑒𝜆1(𝑠+𝑡) 0 = 𝑆𝑒Λ(𝑠+𝑡)𝑆−1 = 𝑒𝐴(𝑠+𝑡).0 𝑒𝜆2(𝑠+𝑡)] 𝑆−1 

5Example 18.2. Let 𝐴 = [6
1 2] Solve the initial value problem x ′ = 𝐴x, x(0) = [3

5] 

Solution: We know the answer is x = 𝑒𝐴𝑡 [3
5]. 

We also know 𝐴 has eigenvalues 7, 1 and corresponding eigenvectors [5
1], [ 1

−1]. 

We can rewrite x(𝑡) = 𝑒𝐴𝑡 [3
5] as 

−1 

x(𝑡) = 𝑆𝑒Λ𝑡 𝑆−1 [3
5] = [5 

−1
1 ] [𝑒7𝑡 

𝑒
0
𝑡] [5 1 [3

5] (*) 1 0 1 −1] 

= [5 
−1
1 ] [𝑒7𝑡 

𝑒
0
𝑡] [ 

8/6 8
6𝑒7𝑡 [5 

6 
𝑒𝑡 [ 

1
1 0 −22//6] = 1] − 

22 
−1] 

As a general rule, the line marked with the (∗) is a fine answer to this question. 

18.4 Exponential response formula (ERF) 

Exponential response formula. For a constant matrix 𝐴 and a constant vector k the DE 

x ′ = 𝐴x + 𝑒𝑎𝑡k 

has a particular solution: 
xp(𝑡) = 𝑒𝑎𝑡(𝑎𝐼 − 𝐴)−1k 

This formula is valid as long as 𝑎𝐼 − 𝐴 is invertible, i.e., as long as 𝑎 is not an eigenvalue 
of 𝐴. 
Proof. Not surprisingly, we discover this formula by the method of optimism. We try a 
solution of the form xp(𝑡) = 𝑒𝑎𝑡v, where v is a constant vector. 
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Plug the guess into the DE and solve for v: 
′ xp = 𝑎𝑒𝑎𝑡v = 𝑒𝑎𝑡𝐴v + 𝑒𝑎𝑡k ⇒ (𝑎𝐼 − 𝐴)v = k ⇒ v = (𝑎𝐼 − 𝐴)−1k. 

Thus we have found a particular solution xp(𝑡) = 𝑒𝑎𝑡v = 𝑒𝑎𝑡(𝑎𝐼 − 𝐴)−1k. QED 

5Example 18.3. Find the general solution to [𝑥′ 

2] [𝑥
𝑦] + [ 

𝑒2𝑡 

𝑦′] = [6
1 3𝑒2𝑡]. 

Solution: For ease of notation we rewrite the equation as x ′ = 𝐴x + 𝑒2𝑡 [3
1]. The 

exponential response formula gives us a particular solution 

−1 

3] = 𝑒2𝑡 [−4 −5 [1
3] = −𝑒2𝑡 5 

5𝑒2𝑡 [ 
15 xp(𝑡) = 𝑒2𝑡(2𝐼 − 𝐴)−1 [1 

−1 0 
] 5 

[1
0 

−4] [3
1] = −1 

−11] 

We know from previous topics that the general homogeneous equation is 

xh(𝑡) = 𝑐1𝑒𝑡 [−1
1 ] + 𝑐2𝑒7𝑡 [5

1] 

By superposition the general solution to the system is x(𝑡) = xp(𝑡) + xh(𝑡). 

5Example 18.4. Solve [𝑥
𝑦′

′
] = [6

1 2] [𝑥
𝑦] + [3𝑒

5𝑒
2𝑡
3𝑡]. 

Solution: Write the input as 𝑒2𝑡 [3
0] + 𝑒3𝑡 [5

0]. Now you can find a particular solution to 

the equation for a each input term and then use superposition. 

There are more examples in the next section. 

18.5 Exponential response formula examples 

𝑥′ = 3𝑥 − 𝑦 + 𝑒2𝑡 

Example 18.5. Find the general solution to 𝑦′ = 4𝑥 − 𝑦 − 𝑒2𝑡 

−1Solution: In matrix form the equation is x ′ = [3
4 −1] x + 𝑒2𝑡 [−1

1 ]. The exponential 

response formula tells us a particular solution is 
−1 

−1] = 𝑒2𝑡 [−1 [−1
1 ] = 𝑒2𝑡 [3 −1 

−1] = 𝑒2𝑡 [4 xp(𝑡) = 𝑒2𝑡(2𝐼 − 𝐴)−1 [ 
1 

−1] [ 
1 

5] . −4
1
3] 4 

We’ll let you verify the calculation of the inverse. Likewise we’ll let you find the homogeneous 
solution needed for the general solution. 

𝑥′ = 3𝑥 − 𝑦 + 3 Example 18.6. Find a particular solution to 𝑦′ = 4𝑥 − 𝑦 + 2 

Solution: Note that we could get our solution using the exponential response formula, 
where the exponent is 𝑎 = 0. Instead, we’ll just say that we’re guessing a constant solution 
and solve for its exact value. 
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Try x = v. Substitution into the DE gives x ′ = 0 = 𝐴v + [3
2]. 

−1−1So, v = −𝐴−1 [3
2] = − [3 [3

2] = [1
6]. That is xp(𝑡) = [1

6].4 −1] 

Again, we’ll let you verify the calculation of the inverse. 
2Example 18.7. Find a particular solution to [𝑥

𝑦′
′
] = [1

2 1] [𝑥
𝑦] + [cos0

(𝑡)]. 

Solution: To use the exponential response formula, we first need to use complex replace-
ment. The complexified equation is 

2 z ′ = [1 
1] z + 𝑒𝑖𝑡 [1

0] , where x = Re(z).2 

Now we compute the inverse to prepare for the exponential response formula: 
−1 

= [−1 + 𝑖 −2 1 2(𝑖𝐼 − 𝐴)−1 =−2 −1 + 𝑖] 2−2𝑖 − 4 
[−1 + 𝑖 

−1 + 𝑖] 

1 2 1So, zp(𝑡) = 𝑒𝑖𝑡(𝑖𝐼 − 𝐴)−1 [1
0] = 0] =2 −1 + 𝑖] [1 

−2 
]. 

To find the real part of zp, we work in polar coordinates. First we write the various complex 
numbers in polar form: 

2𝑖 + 4 = 2
√

5𝑒𝑖𝜙1 , where 

−2𝑖 − 4𝑒𝑖𝑡 [−1 + 𝑖 
2𝑖 + 4𝑒𝑖𝑡 [1 − 𝑖 

𝜙1 = Arg(2𝑖 + 4) = tan−1(1/2) in the first quadrant. 

Likewise 1 − 𝑖 = 
√

2𝑒𝑖𝜙2;, where 𝜙2 = −𝜋/4 . 
−𝑒𝑖𝑡 

√
2𝑒𝑖𝜙2 

√
2𝑒𝑖(𝑡+𝜙2−𝜙1)

So, zp(𝑡) = 2
√

5𝑒𝑖𝜙1 
[ −2 

] = −2
√1

5 
[ −2𝑒𝑖(𝑡−𝜙1) ] . 

Taking the real part: 
√

2 cos(𝑡 + 𝜙2 − 𝜙1)xp(𝑡) = Re(zp) = [ ]−2 cos(𝑡 − 𝜙1) 

Here is the same calculation in rectangular coordinates. I think the arithmetic is more error 
prone and the answer is harder to interpret. 

1 4 − 2𝑖 [1 − 𝑖 
10
1 [ 

1 − 3𝑖 
2𝑖 + 4 

[1 − 𝑖 
20−2 

] = −2 
] = −4 + 2𝑖] . 

So, zp(𝑡) = 10
1 (cos(𝑡)+𝑖 sin(𝑡)) [ 

1 − 3𝑖 1 cos(𝑡) + 3 sin(𝑡) + 𝑖(sin(𝑡) − 3 cos(𝑡))
−4 + 2𝑖] = 10 [−4 cos(𝑡) − 2 sin(𝑡) + 𝑖(−4 sin(𝑡) + 2 cos(𝑡))] . 

1 cos(𝑡) + 3 sin(𝑡)Thus, xp(𝑡) = Re(zp(𝑡)) = 10 
[−4 cos(𝑡) − 2 sin(𝑡)] . 
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