
mas.s62 
lecture 16 

MAST, taproot, graftroot 

2018-04-09 
Tadge Dryja 

1



today 
new types of scripts 

MAST 

taproot 

graftroot 

2



script types 

mostly P2PKH or segwit equivalent 

OP_DUP OP_HASH160 <pkh> 
OP_EQUALVERIFY OP_CHECKSIG 

OP_0 <pkh> 

(segwit saves 3 bytes) 3



script types 
P2SH or segwit equivalent 

P2SH: OP_HASH160 <sh> OP_EQUAL 

P2WSH: OP_0 <sh> 

(distinguished from P2WPKH by data 
size (20 vs 32 bytes)) 

mostly used for multisig 4



script types 
multisig: 

OP_2 <pkA> <pkB> <pkC> OP_3 
OP_CHECKMULTISIG 

to spend: 

OP_0 <sigA> <sigC> 

5



output vs input size 
pay to pubkey: 

<pk> OP_CHECKSIG 

34 bytes in output script (+10), but 
saves 33 bytes in signature! Overall 
23 bytes smaller! 

6



output vs input size 
keep output sizes small as they are 
in the utxo DB. Need to be randomly 
read. 

Signatures not in DB, only blocks, 
linear read and latency is OK 

7



output vs input size 
similarly, could put full scripts 
(like multisig) in the output field 

space savings overall, but better to 
keep output size small 

8



big scripts 
what if we want really big scripts 

2 of 3 multisig, just show all 3 
keys, 33 bytes of extra data 

2 of 50 multisig...? 

9



big scripts 
commit, only reveal part of 
commitment 

...the cause of, and solution to, all 
a blockchain's problems! 

merkle trees! 

10



MAST 
merkelized abstract syntax tree 

make every opcode a leaf in a tree 

perhaps overkill, simpler is "P2SMR" 

pay to script merkle root 

11



MAST 
make a bunch of 
scripts 

make a merkle 
tree of them 

send to the root script 
0 

script 
1 

script 
3 

script 
4 

hash 
2,3 

hash 
h,h 

hash 
0,1 

12



MAST 
to spend, reveal 
which you're 
spending 

script 
0 

script 
1 

script 
3 

script 
4 

hash 
2,3 

hash 
h,h 

hash 
0,1 

13



MAST 
to spend, reveal 
which you're 
spending 

script 
0 

script 
1 

script 
3 

script 
4 

hash 
2,3 

hash 
h,h 

hash 
0,1 

14



MAST 
to spend, reveal 
which you're 
spending 

and reveal the 
path to the root script 

0 
script 
1 

script 
3 

script 
4 

hash 
2,3 

hash 
h,h 

hash 
0,1 

15



MAST 
to spend, reveal 
which you're 
spending 

and reveal the 
path to the root script 

0 
script 
1 

script 
3 

script 
4 

hash 
2,3 

hash 
h,h 

hash 
0,1 

16



MAST 
to spend, reveal 
which you're 
spending 

and reveal the 
path to the root script 

0 
script 
1 

script 
3 

script 
4 

hash 
2,3 

hash 
h,h 

hash 
0,1 

17



MAST 
to spend, reveal 
which you're 
spending 

and reveal the 
path to the root script 

0 
script 
1 

script 
3 

script 
4 

hash 
2,3 

hash 
h,h 

hash 
0,1 

18



MAST for big multisig 
in the case of 2 of 50, it's 

50 choose 2 = 1225 scripts, 

tree height 11 

proof size 11*32 = 352 bytes 

raw is 50*33 = 1650 bytes 
19



MAST for big multisig 
25 of 50? 50 choose 25 = ~100T 
scripts, tree height 47 

proof size 22*32 = 1504 bytes 

raw is 50*33 = 1650 bytes 

not much better. Also have to 
compute 200 trillion hashes. 

20



MAST deployment 
P2SMR, or tail call? 

tail call: if there are 2 items left 
on the stack, treat the top as the 
MR, and the bottom as the proof & 
arguments 

21



intermission 
1<<7 sec timeout 

22



OP_RETURN 
seems unconnected... 

people use OP_RETURN to put data in 
the blockchain. 

But why? 

23



OP_RETURN 
seems unconnected... 

people use OP_RETURN to put data in 
the blockchain. 

But why? 

to prove it's there 

24



0 byte OP_RETURN 
want to prove knowledge of some data 
before a blockheight 

with 0 bytes overhead... 

25



0 byte OP_RETURN 
want to prove knowledge of some data 
before a blockheight 

with 0 bytes overhead... 

put it in the signature! 

26



P2CH 
pay to contract hash 

Poelstra like a year ago? 

weird name as it's undetectable 

signature is: 

s = k - h(m, R)a 

sG = R - h(m, R)A 27



P2CH 
s = k - h(m, R)a 

k = j + h(data, jG)G 

s = j+h(data, jG)G - h(m, kG)a 

to verify, still 

sG = R - h(m, R)A 

28



P2CH 
sig: (R, s) pubkey: A message: m 

sG = R - h(m, R)A 

but signer can prove that R is not 
kG! 

(also, never reveal k, even later) 

29



P2CH 
sig: (R, s) pubkey: A message: m 

sG = R - h(m, R)a 

R = J + h(data, J)G 

no way to prove this after the fact 

J = h(data, J)G - R ...? J = h(J) 

30



P2CH 
put data inside a signature's R point 

can even do it with other people's 
signatures! Just hand them the data, 
they give you the proof (just J) 

OP_RETURN in 0 bytes -- nifty 

31



taproot 
ML post by Greg a few months ago 

uses P2CH 

same equation, but somehow took us a 
year or two to find this :) 

32



taproot 
motivation: P2PKH and P2SH look 
different. Different is bad. 

can use P2SH for everything? 

often, scripts OR "everyone signs" 

in 2 of 50 multisig... 50 of 50 is 
also fine 

33



taproot 
merge P2PKH and P2SH 

make key J, script z. Send to key C 

C = J + hash(z, J)G 

34



taproot 
C = J + hash(z, J)G 

treat as p2pkh: sign with 

c = j + hash(z, J) 

treat as p2sh: reveal (z, J), 
arguments, and run script 

35



taproot 
P = sum of everyone's keys 

n of n -> 1 sig for schnorr (not ECDSA) 

most smart contracts have an "all 
participants sign" clause 

if everyone agrees, don't even show 
the contract 

36



taproot 
weird trick: can make a pubkey and 
prove there is no known private key 

C = J + hash(z, J)G 

interactive: use someone elses J 

non-interactive: 

show pre-image of J's x-coordinate 37



taproot 
note that anyone can make a key and 
script and send to it 

only pubkeys needed 

which differs from the next cool 
thing which is... 

38



graftroot 
Maxwell, 2 months ago 

Allow lots of scripts with O(1) proof 
size 

merkle proofs grow in log(n) 

proof that grows O(1)...? 

39



graftroot 
Maxwell, 2 months ago 

Allow lots of scripts with O(1) proof 
size 

merkle proofs grow in log(n) 

proof that grows O(1)...? 

signature 40



graftroot 
key or script, but many scripts 

send to key C 

p2pkh: spend from C 

p2sh: show script s, signature from C 
on message s, script arguments 

41



graftroot 
root key must sign every script 

need to use private keys to create an 
address 

overhead is 1 signature, to endorse 
the script being executed 

42



graftroot 
overhead is 1 signature, to endorse 
the script being executed 

64 bytes? overhead is 33 bytes; can 
aggregate the s values (more on that 
next time) 

43



graftroot 
simple! more scripts can be added any 
time. O(1) scaling. a million scripts in 32 bytes 

C can be threshold of many parties 

signature can be aggregated within tx 

downside: interactive setup 

44



all together 
unified output script: 

OP_5 <pubkey> 

to spend: 

45



all together 
to spend: 

<sig> P2PKH mode 

<J> <script> []<args> 

taproot; verify commitment, execute 

<C> <sig on script> <script> []<args> 

graftroot; verify sig, execute 46



not implemented 
there's code out there, but none of 
this is in Bitcoin, or any coin 

maybe this year? next year? 

If interested... start coding it! 

(Also... use cases!) 

MAST vs graftroot vs both 47



MIT OpenCourseWare 
https://ocw.mit.edu/ 

MAS.S62 Cryptocurrency Engineering and Design 
Spring 2018 

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms. 

https://ocw.mit.edu/
https://ocw.mit.edu/terms



