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A = 

⎡ 

⎣ 
1 2 11 17 
3 7 37 57 
4 9 48 74 

⎤ 

⎦ → Z = 

⎡ 

⎣ 
1 0  3 5  
0 1  4 6  
0 0  0 0  

⎤ 

⎦ . 

1. Rows 1, 2 of Z (call them R) are a basis for 

the row space of A. 

2. Columns 1, 2 of A (call them C) are a basis for 

the column space of A. 
3. The nullspace of Z equals the nullspace of A 

(orthogonal to the same row space). 
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Elimination factors A into C times R 

= (m × r) times (r × n) 

A = 

⎡ 

⎣ 
1 2 11 17 
3 7 37 57 
4 9 48 74 

⎤ 

⎦= 

⎡ 

⎣ 
1 2  
3 7  
4 9  

⎤ 

⎦ 

 
1 0 3 5  
0 1 4 6  

 

= CR 

C has full column rank r = 2, R has full row rank r = 2. 

A = CR leads to the first great theorem in linear algebra 

Column rank equals row rank for every matrix A 
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Suppose A has r independent columns : rank = r 

Put the first r independent columns of A into C 

Then the other n − r columns of A must be 

combinations CF of those independent columns 

in C. 

The row factor is R = 
 
I F  P , with 

r independent rows. 

A= CR = 
 
C CF  P 

= 
 

Indep cols Dep cols Permute cols 
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If the r independent columns come first in A, 

that permutation matrix will be P = I. 

Otherwise we need P to permute the columns of C 

and CF  into correct position in A. 

P exchanges columns 2 and 3 : 
A= 

 
1 2 3 4  
1 2 4 5  

 

= 

 
1 3  
1 4  

   
1 2 0 1  
0 0 1 1  

 

= 

 
1 3  
1 4  

   
1 0 2 1  
0 1 0 1  

 

P 

= CR. 
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The essential information in Z = rref (A) is the list of r 

independent columns of A, and the matrix F (r by n − r) 

that combines those independent columns to give the n − r 

dependent columns CF in A. This uniquely defines 

rref (A). 
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These row operations put A into its reduced row 

echelon form Z 

(a) Subtract a multiple of one row from another row 

(below or above) 

(b) Exchange two rows 

(c) Divide a row by its first nonzero entry 

Elimination reduces A to Z = rref(A) =  

 
I F  
0 0  

 

P 
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Column by column (left to right) construct Z = rref(A). 

After elimination on k columns, that first part of 

the matrix is in its own rref form. 

The next column has an upper part u and a lower part  : 

First k + 1 columns 

 
Ik Fk 

0 0 

 

Pk followed by 

 
u 
 

 

The big question is : Does this new column k + 1  

join with Ik or Fk ? 
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If  is all zeros, the new column is dependent on the 

first k columns. Then u joins with Fk to produce Fk+1 

in the next step to column k + 2. 

If  is not all zero, the new column is independent of 

the first k columns. 

Pick any nonzero in  as the pivot. 

Move that pivot row of A to the top of . 

Use that row to zero out all the rest of column k + 1. 

The new column k + 1 joins with Ik to produce Ik+1. 
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Elimination tells us the first r independent columns 

of A. Those are the columns of C. The row space is not 

changed ! Then its orthogonal complement (the 

nullspace of A) is not changed. 

Each column of CF tells us how a dependent column 

of A is a combination of the independent columns in C. 

Key point : The n − r columns of F are telling us 

n − r solutions to Ax = 0. 
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The nullspace of A is easiest to see by example. 
x1 +2x2 +11x3 +17x4 = 0  
3x1 +7x2 +37x3 +57x4 = 0  

reduces 

to 

x1 +3x3 +5x4 = 0  
x2 +4x3 +6x4 = 0  

Solution with x3 = 1  & x4 = 0  is x = 
 
−3 −4 1 0  

T 

. 

Solution with x3 = 0  & x4 = 1  is x = 
 
−5 −6 0 1  

T 

. 

Those solutions are the two columns of X in AX = 0. 
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Find the nullspace of A 
A=C 

 
I F  P multiplies the nullspace matrix 

X = PT 

 
−F 
In−r 

 

to produce 

AX = −CF + CF = 0. 

Each column of X solves Ax = 0 (note that PPT = I). 

Each dependent column of A is a combination of the 

independent columns in C. 
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Gauss-Jordan elimination leading to A = CR  is less 

efficient than the Gauss process that directly solves 
Ax = b. Gauss stops at a triangular system Ux  = c : 

back substitution produces x. Gauss-Jordan has the extra 

cost of eliminating upwards. If we only want to solve 

equations, Gauss is faster than A = CR. 
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Block elimination Suppose the matrix W in the first r 

rows and columns of A is invertible. Then elimination takes 

all its instructions from W ! 

W will change to I . This identifies F as W −1
H . 

And the last m − r rows will become zero rows. 

Block 

elimination 

A = 

 
W H  
J K  

 

reduces 

to 

 
I F  
0 0  

 

= rref(A)
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In general that first r by r block might not be invertible. 

But elimination will find W . We can move W to the upper 

left corner by row and column permutations Pr and Pc. 

Then the full expression of block elimination is 

PrAPc = 

 
W H  
J K  

 

→ 

 
I W−1H 
0 0 
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Interesting point. Since A has rank r, we know that A has r 

independent rows and r independent columns. Suppose 

those rows are in a submatrix B and those columns are in a 

submatrix C. Is it always true that the r by r “intersection” W 

of those rows B with those columns C will be invertible ? 

Yes ! The intersection of r independent rows of A 

with r independent columns of A is invertible. 
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