FIVE FACTORIZATIONS

OF A MATRIX

Gilbert Strang (2023)

Introduction to Linear Algebra (6th ed)

KEY IDEAS AT THE START

Linear independence and dependence

 $A\boldsymbol{x} = \text{combination of columns of } A = x_1\boldsymbol{a}_1 + \cdots + x_n\boldsymbol{a}_n$

Each column of CR is a combination of the columns of C

A=CR: Column space from C, row space from R

- 1 A = CR $(m \times r)(r \times n)$ for any m by n matrix A of rank r

For n by n invertible matrices, solve $\boldsymbol{A}\boldsymbol{x}=\boldsymbol{b}$ in 2 steps

Triangular $oldsymbol{L} oldsymbol{c} = oldsymbol{b}$ Triangular $oldsymbol{U} oldsymbol{x} = oldsymbol{c}$

Then Ax = LUx = Lc = b

$$A = \begin{bmatrix} 1 & 1 & 3 \\ 2 & 3 & 7 \\ 1 & 4 & 6 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 2 & 3 \\ 1 & 4 \end{bmatrix} \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 1 \end{bmatrix} = CR$$

Columns 1 and 2 of A are independent: rank 2

Those independent columns go into C

Column 3 of A = 2(column 1) + 1(column 2)

So 2 and 1 go into column 3 of $R = \begin{bmatrix} I & F \end{bmatrix}$

The n-r dependent columns of A are combinations CF of the r independent columns

Every
$$A = CR = C \begin{bmatrix} I & F \end{bmatrix} P =$$
 [Independent cols Dependent cols] Permute cols

Suppose the r columns of C are columns $j_1, \ldots j_r$ of A

Then P puts the r columns of I into columns $j_1, \ldots j_r$ of R

$$\begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 4 & 5 \end{bmatrix} = \begin{bmatrix} 1 & 3 \\ 1 & 4 \end{bmatrix} \begin{bmatrix} 1 & 2 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix} = CR$$
$$R = \begin{bmatrix} 1 & 0 & 2 & 1 \\ 0 & 1 & 0 & 1 \end{bmatrix} P$$

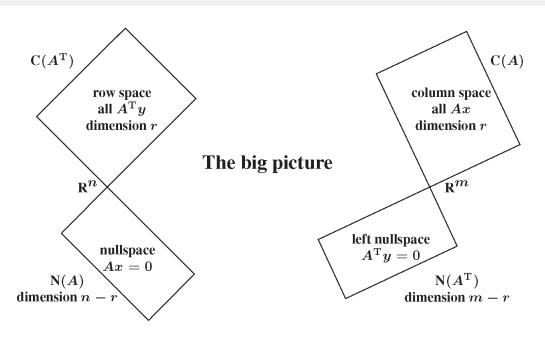
C has r independent columns //R has r independent rows

From A=CR, columns of C span the column space of A

From A=CR, the rows of R span the row space of A

Column space and row space of A have same dimension r

The Big Picture: Four Subspaces



Elimination computes the reduced row echelon form of A

$$\operatorname{rref}(A) = \begin{bmatrix} R \\ 0 \end{bmatrix} = \begin{bmatrix} I & F \\ 0 & 0 \end{bmatrix} P$$
 Finding R first I locates indep. columns

First
$$k+1$$
 columns: $\begin{bmatrix} I_k & F_k \\ 0 & 0 \end{bmatrix} P_k$ are followed by $\begin{bmatrix} \boldsymbol{u} \\ \boldsymbol{\ell} \end{bmatrix}$

If $\ell = \text{zero vector then } \boldsymbol{u}$ joins F_k to produce F_{k+1}

If
$$\ell \neq 0$$
 then $\left[egin{array}{c} oldsymbol{u} \\ \ell \end{array}
ight]$ becomes $\left[egin{array}{c} 0 \\ 1 \\ 0 \end{array}
ight]$ to produce I_{k+1}

Note: Every part I, F, P of $\mathbf{rref}(A)$ is determined by A

$$x_{1} + 2x_{2} + 11x_{3} + 17x_{4} = 0 \longrightarrow x_{1} + 3x_{3} + 5x_{4} = 0$$

$$3x_{1} + 7x_{2} + 37x_{3} + 57x_{4} = 0 \longrightarrow x_{2} + 4x_{3} + 6x_{4} = 0$$

$$4x_{1} + 9x_{2} + 48x_{3} + 74x_{4} = 0 \longrightarrow 0 = 0$$

$$A\mathbf{x} = \mathbf{0} \longrightarrow R\mathbf{x} = \mathbf{0}$$

$$A = \begin{bmatrix} 1 & 2 & 11 & 17 \\ 3 & 7 & 37 & 57 \\ 4 & 9 & 48 & 74 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 3 & 7 \\ 4 & 9 \end{bmatrix} \begin{bmatrix} 1 & 0 & 3 & 5 \\ 0 & 1 & 4 & 6 \end{bmatrix} = CR$$

Nullspace
$$\begin{bmatrix} -3 \\ -4 \\ 1 \\ 0 \end{bmatrix}$$
 and $\begin{bmatrix} -5 \\ -6 \\ 0 \\ 1 \end{bmatrix}$ Solve $R\boldsymbol{x} = \boldsymbol{0}$ to find $=$ "special solutions to $A\boldsymbol{x} = \boldsymbol{0}$ "

$$\begin{array}{ll} \textbf{Block} \\ \textbf{elimination} \end{array} \quad P_rAP_c = \left[\begin{array}{cc} W & H \\ J & K \end{array} \right] \rightarrow \left[\begin{array}{cc} I & W^{-1}H \\ 0 & 0 \end{array} \right]$$

The "intersection" of r independent rows of A with r independent columns of A produces an r by r invertible matrix W Elimination reduces W to I and finds $R = \begin{bmatrix} I & W^{-1}H \end{bmatrix}$

Factorization 3 "Gram-Schmidt"

 $oldsymbol{A} = oldsymbol{Q} oldsymbol{R} = (\mathsf{orthogonal}) (\mathsf{triangular})$

From independent columns in A to orthogonal unit vectors q_1 to q_n

$$Q^{\mathrm{T}}Q = \begin{bmatrix} & \boldsymbol{q}_1^{\mathrm{T}} & & \\ & \ddots & & \\ & \boldsymbol{q}_n^{\mathrm{T}} & \end{bmatrix} \begin{bmatrix} \boldsymbol{q}_1 & \cdots & \boldsymbol{q}_n \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ & \ddots & & \\ 0 & 0 & 1 \end{bmatrix} = I$$

Why is Q so good? Least squares finds $\widehat{\boldsymbol{x}}$ to minimize $||A\boldsymbol{x}-\boldsymbol{b}||^2$

$$A^{\mathrm{T}}A\widehat{\pmb{x}}=A^{\mathrm{T}}\pmb{b}\to R^{\mathrm{T}}Q^{\mathrm{T}}QR\widehat{\pmb{x}}=R^{\mathrm{T}}Q^{\mathrm{T}}\pmb{b}\to R\widehat{\pmb{x}}=Q^{\mathrm{T}}\pmb{b}$$
 is easy to solve

$$S \begin{bmatrix} m{x}_1 \cdot \cdot m{x}_n \end{bmatrix} = egin{bmatrix} m{x}_1 \cdot \cdot m{x}_n \end{bmatrix} \begin{bmatrix} \lambda_1 & & & \\ & \ddots & & \\ & & \lambda_n \end{bmatrix} & A \begin{bmatrix} m{v}_1 \cdot \cdot m{v}_r \end{bmatrix} = egin{bmatrix} m{u}_1 \cdot \cdot m{u}_r \end{bmatrix} \begin{bmatrix} \sigma_1 & & \\ & \ddots & \\ & \sigma_r \end{bmatrix}$$

$$SX = X\Lambda$$
 $S = X\Lambda X^{-1} = X\Lambda X^{\mathrm{T}}$ $AV = U\Sigma$ $A = U\Sigma V^{\mathrm{T}}$

Every matrix A = (rotation U) (stretching Σ) (rotation V^{T}) (\boldsymbol{v} 's are eigenvectors of $A^{\mathrm{T}}A$) (\boldsymbol{u} 's are eigenvectors of AA^{T})

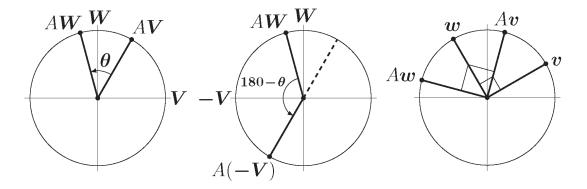


Figure: Angle θ from AV to AW is below 90° . Angle $180-\theta$ from AW to -AV is above 90° . Somewhere in between, as ${\boldsymbol v}$ moves from ${\boldsymbol V}$ toward ${\boldsymbol W}$, the angle from $A{\boldsymbol v}$ to $A{\boldsymbol w}$ is exactly 90° . The pictures don't show vector lengths.

Interpolation / Approximation using Deep Learning?

Given: Values w_k at N points u_k in \mathbf{R}^n

Goal: Learning function F(x,u) with weights x and $F(x,u_k)\approx w_k$

Chain of functions

$$F(x, u) = F_L(x_L, F_{L-1}(x_{L-1}, F_{L-2}(\dots F_1(x_1, u))))$$

Composition of L simple functions F_k : vector \rightarrow vector

The weights $\boldsymbol{x} = x_L, x_{L-1}, \dots, x_1$ are chosen so that $F(x, u_k) \approx w_k$ Each $x_k = \text{matrix } A_k$ and vector b_k

$$F_k(x_k, F_{k-1}) = \mathsf{ReLU}(A_k F_{k-1} + b_k)$$

Nonlinear $\operatorname{ReLU}(y) = \begin{cases} y & y \geq 0 \\ 0 & y \leq 0 \end{cases}$ applied to each component

Compute weights x to minimize the loss ||F(x,u)-w||

Gradient descent or Stochastic gradient descent : not Newton

MIT OpenCourseWare https://ocw.mit.edu

Resource: A Vision of Linear Algebra Gilbert Strang

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.