
Principles of Computer
System Design

An Introduction

Suggestions for Further Reading

Jerome H. Saltzer

M. Frans Kaashoek

Massachusetts Institute of Technology

Version 5.0

Saltzer & Kaashoek Ch. 11, p. i June 24, 2009 12:32 am

Copyright © 2009 by Jerome H. Saltzer and M. Frans Kaashoek. Some Rights Reserved.

This work is licensed under a Creative Commons Attribution-Non
commercial-Share Alike 3.0 United States License. For more information on what this
license means, visit http://creativecommons.org/licenses/by-nc-sa/3.0/us/

Designations used by companies to distinguish their products are often claimed as trade
marks or registered trademarks. In all instances in which the authors are aware of a claim,
the product names appear in initial capital or all capital letters. All trademarks that
appear or are otherwise referred to in this work belong to their respective owners.

Suggestions, Comments, Corrections, and Requests to waive license restrictions:
Please send correspondence by electronic mail to:

Saltzer@mit.edu
and

kaashoek@mit.edu

Saltzer & Kaashoek Ch. 11, p. ii June 24, 2009 12:32 am

http://creativecommons.org/licenses/by-nc-sa/3.0/us/
mailto:Saltzer@mit.edu
mailto:kaashoek@mit.edu

CHAPTERSuggestions for Further Reading

TABLE OF CONTENTS
Introduction... SR–2

1 Systems ... SR–4

1.1 Wonderful books about systems ... SR–4

1.2 Really good books about systems. .. SR–6

1.3 Good books on related subjects deserving space on the systems

bookshelf ... SR–7

1.4 Ways of thinking about systems ... SR–11

1.5 Wisdom about system design .. SR–13

1.6 Changing technology and its impact on systems SR–14

1.7 Dramatic visions .. SR–16

1.8 Sweeping new looks ... SR–17

1.9 Keeping big systems under control: .. SR–20

2 Elements of Computer System Organization............................. SR–21

2.1 Naming systems .. SR–22

2.2 The UNIX® system ... SR–22

3 The Design of Naming Schemes ... SR–23

3.1 Addressing architectures ... SR–23

3.2 Examples ... SR–24

4 Enforcing Modularity with Clients and Services SR–25

4.1 Remote procedure call .. SR–25

4.2 Client/service systems .. SR–26

4.3 Domain Name System (DNS) .. SR–26

5 Enforcing Modularity with Virtualization SR–27

5.1 Kernels ... SR–27

5.2 Type extension as a modularity enforcement tool SR–28

5.3 Virtual Processors: Threads ... SR–29

5.4 Virtual Memory .. SR–30

5.5 Coordination ... SR–30

5.6 Virtualization ... SR–32

6 Performance... SR–33

6.1 Multilevel memory management .. SR–33

6.2 Remote procedure call .. SR–34

6.3 Storage .. SR–35

6.4 Other performance-related topics ... SR–36

7 The Network as a System and as a System Component SR–37

7.1 Networks .. SR–37

7.2 Protocols .. SR–37

7.3 Organization for communication .. SR–39

7.4 Practical aspects .. SR–40

SR–1

Saltzer & Kaashoek Ch. sr, p. 1 June 24, 2009 12:32 am

SR–2 Suggestions for Further Reading

8 Fault Tolerance: Reliable Systems from Unreliable Components
SR–40

8.1 Fault Tolerance .. SR–40

8.2 Software errors ... SR–41

8.3 Disk failures .. SR–41

9 Atomicity: All-or-Nothing and Before-or-After.......................... SR–42

9.1 Atomicity, Coordination, and Recovery SR–42

9.2 Databases .. SR–42

9.3 Atomicity-related topics .. SR–44

10 Consistency and Durable Storage... SR–44

10.1 Consistency ... SR–44

10.2 Durable storage ... SR–46

10.3 Reconciliation .. SR–47

11 Information Security.. SR–48

11.1 Privacy ... SR–48

11.2 Protection Architectures .. SR–48

11.3 Certification, Trusted Computer Systems and Security Kernels . SR–49
11.4 Authentication ... SR–50

11.5 Cryptographic techniques .. SR–51

11.6 Adversaries (the dark side) ... SR–52

Last section page SR–53

Introduction
The hardware technology that underlies computer systems has improved so rapidly and
continuously for more than four decades that the ground rules for system design are con
stantly subject to change. It takes many years for knowledge and experience to be
compiled, digested, and presented in the form of a book, so books about computer sys
tems often seem dated or obsolete by the time they appear in print. Even though some
underlying principles are unchanging, the rapid obsolescence of details acts to discourage
prospective book authors, and as a result some important ideas are never documented in
books. For this reason, an essential part of the study of computer systems is found in cur
rent—and, frequently, older—technical papers, professional journal articles, research
reports, and occasional, unpublished memoranda that circulate among active workers in
the field.

Despite that caveat, there are a few books, relatively recent additions to the literature
in computer systems, that are worth having on the shelf. Until the mid-1980s, the books
that existed were for the most part commissioned by textbook publishers to fill a market,
and they tended to emphasize the mechanical aspects of systems rather than insight into
their design. Starting around 1985, however, several good books started to appear, when
professional system designers became inspired to capture their insights. The appearance
of these books also suggests that the concepts involved in computer system design are

Saltzer & Kaashoek Ch. sr, p. 2 June 24, 2009 12:32 am

Suggestions for Further Reading SR–3

finally beginning to stabilize a bit. (Or it may just be that computer system technology
is beginning to shorten the latencies involved in book publishing.)

The heart of the computer systems literature is found in published papers. Two of the
best sources are Association for Computing Machinery (ACM) publications: the journal
ACM Transactions on Computer Systems (TOCS) and the bi-annual series of conference
proceedings, the ACM Symposium on Operating Systems Principles (SOSP). The best
papers of each SOSP are published in a following issue of TOCS, and the rest—in recent
years all—of the papers of each symposium appear in a special edition of Operating Sys
tems Review, an ACM special interest group quarterly that publishes an extra issue in
symposium years. Three other regular symposia are also worth following: the European
Conference on Computer Systems (EuroSys), the USENIX Symposium on Operating Systems
Design and Implementation (OSDI), and the USENIX Symposium on Network Systems
Design and Implementation (NSDI). These sources are not the only ones—worthwhile
papers about computer systems appear in many other journals, conferences, and work
shops. Complete copies of most of the papers listed here, including many of the older
ones, can be found on the World Wide Web by an on-line search for an author’s last
name and a few words of the paper title. Even papers whose primary listing requires a
subscription are often posted elsewhere as open resources.

The following pages contain suggestions for further reading about computer systems,
both papers and books. The list makes no pretensions of being complete. Instead, the
suggestions have been selected from a vast literature to emphasize the best available
thinking, best illustrations of problems, and most interesting case studies of computer
systems. The readings have been reviewed for obsolescence, but it is often the case that a
good idea is still best described by a paper from some time ago, where the idea was devel
oped in a context that no longer seems interesting. Sometimes that early context is much
simpler than today’s systems, thus making it easier to see how the idea works. Often, an
early author was the first on the scene, so it was necessary to describe things more com
pletely than do modern authors who usually assume significant familiarity with the
surroundings and with all of the predecessor systems. Thus the older readings included
here provide a useful complement to current works.

By its nature, the study of the engineering of computer systems overlaps with other
areas of computer science, particularly computer architecture, programming languages,
databases, information retrieval, security, and data communications. Each of those areas
has an extensive literature of its own, and it is often not obvious where to draw the
boundary lines. As a general rule, this reading list tries to provide only first-level guidance
on where to start in those related areas.

One thing the reader must watch for is that the terminology of the computer systems
field is not agreed upon, so the literature is often confusing even to the professional. In
addition, the quality level of the literature is quite variable, ranging from the literate
through the readable to the barely comprehensible. Although the selections here try to
avoid that last category, the reader must still be prepared for some papers, however
important in their content, that do not explain their subject as well as they could.

Saltzer & Kaashoek Ch. sr, p. 3 June 24, 2009 12:32 am

SR–4 Suggestions for Further Reading

In the material that follows, each citation is accompanied by a comment suggesting
why that paper is worth reading—its importance, interest, and relation to other readings.
When a single paper serves more than one area of interest, cross-references appear rather
than repeating the citation.

1 Systems
As mentioned above, a few wonderful and several really good books about computer sys
tems have recently begun to appear. Here are the must-have items for the reference shelf
of the computer systems designer. In addition to these books, the later groupings of read
ings by topic include other books, generally of narrower interest.

1.1 Wonderful books about systems

1.1.1 David A. Patterson and John L. Hennessy. Computer Architecture: A
Quantitative Approach. Morgan Kaufman, fourth edition, 2007. ISBN:
978–0–12–370490–0. 704 + various pages (paperback). The cover gives the authors’
names in the opposite order.

This book provides a spectacular tour-de-force that explores much of the design
space of current computer architecture. One of the best features is that each area
includes a discussion of misguided ideas and their pitfalls. Even though the subject
matter gets sophisticated, the book is always readable. The book is opinionated
(with a strong bias toward RISC architecture), but nevertheless this is a definitive
work on computer organization from the system perspective.

1.1.2 Raj Jain. The Art of Computer Systems Performance Analysis. John Wiley & Sons,
1991. ISBN 978–0–471–50336–1. 720 pages.

Much work on performance analysis of computer systems originates in academic
settings and focuses on analysis that is mathematically tractable rather than on
measurements that matter. This book is at the other end of the spectrum. It is
written by someone with extensive industrial experience but an academic flair for
explaining things. If you have a real performance analysis problem, it will tell you
how to tackle it, how to avoid measuring the wrong thing, and how to step by other
pitfalls.

1.1.3 Frederick P. Brooks Jr. The Mythical Man-Month: Essays on Software
Engineering. Addison-Wesley, 20th Anniversary edition, 1995. ISBN:
978–0–201–83595–3 (paperback). 336 pages.

Well-written and full of insight, this reading is by far the most significant one on
the subject of controlling system development. This is where you learn why adding
more staff to a project that is behind schedule will delay it further. Although a few

Saltzer & Kaashoek Ch. sr, p. 4 June 24, 2009 12:32 am

Suggestions for Further Reading SR–5

of the chapters are now a bit dated, much of the material here is timeless. Trouble
in system development is also timeless, as evidenced by continual reports of failures
of large system projects. Most successful system designers have a copy of this book
on their bookshelf, and some claim to reread it at least once a year. Most of the 1995
edition is identical to the first, 1974, edition; the newer edition adds Brooks’ No
Silver Bullets paper (which is well worth reading) and some summarizing chapters.

1.1.4 Lawrence Lessig. Code and Other Laws of Cyberspace, Version 2.0. Basic Books,
2006. ISBN 978–0–465–03914–28 (paperback) 432 pages; 978–0–465–03913–5
(paperback) 320 pages. Also available on-line at http://codev2.cc/

This book is an updated version of an explanation by a brilliant teacher of
constitutional law of exactly how law, custom, market forces, and architecture
together regulate things. In addition to providing a vocabulary to discuss many of
the legal issues surrounding technology and the Internet, a central theme of this
book is that because technology raises issues that were foreseen neither by law nor
custom, the default is that it will be regulated entirely by market forces and
architecture, neither of which is subject to the careful and deliberative thought that
characterize the development of law and custom. If you have any interest in the
effect of technology on intellectual property, privacy, or free speech, this book is
required reading.

1.1.5 Jim [N.] Gray and Andreas Reuter. Transaction Processing: Concepts and
Techniques. Morgan Kaufmann, San Mateo, California, 1993 (Look for the low-bulk
paper edition, which became available with the third printing in 1994). ISBN:
978–1–55860–190–1. 1,070 pages.

All aspects of fault tolerance, atomicity, coordination, recovery, rollback, logs, locks,
transactions, and engineering trade-offs for performance are pulled together in this
comprehensive book. This is the definitive work on transactions. Though not
intended for beginners, given the high quality of its explanations, this complex
material is surprisingly accessible. The glossary of terms is excellent, whereas the
historical notes are good as far as they go, but are somewhat database-centric and
should not be taken as the final word.

1.1.6 Alan F. Westin. Privacy and Freedom. Atheneum Press, 1967. 487 pages. (Out
of print.)

If you have any interest in privacy, track down a copy of this book in a library or
used-book store. It is the comprehensive treatment, by a constitutional lawyer, of
what privacy is, why it matters, and its position in the U.S. legal framework.

1.1.7 Ross Anderson. Security Engineering: A Guide to Building Dependable
Distributed Systems. John Wiley & Sons, second edition, 2008. ISBN 978

Saltzer & Kaashoek Ch. sr, p. 5 June 24, 2009 12:32 am

http://codev2.cc/

SR–6 Suggestions for Further Reading

0–470–06852–6. 1,040 pages.
This book is remarkable for the range of system security problems it considers, from
taxi mileage recorders to nuclear command and control systems. It provides great
depth on the mechanics, assuming that the reader already has a high-level picture.
The book is sometimes quick in its explanations; the reader must be quite
knowledgeable about systems. One of its strengths is that most of the discussions of
how to do it are immediately followed by a section titled “What goes wrong”,
exploring misimplementations, fallacies, and other modes of failure. The first
edition is available on-line.

1.2 Really good books about systems.

1.2.1 Andrew S. Tanenbaum. Modern Operating Systems. Prentice-Hall, third
edition, 2008. ISBN 978–0–13–600663-3 (hardcover). 952 pages.

This book provides a thorough tutorial introduction to the world of operating
systems but with a tendancy to emphasize the mechanics. Insight into why things
are designed the way they are is there, but in many cases requires teasing out.
Nevertheless, as a starting point, it is filled with street knowledge that is needed to
get into the rest of the literature. It includes useful case studies of GNU/Linux,
Windows Vista, and Symbian OS, an operating system for mobile phones.

1.2.2 Thomas P. Hughes. Rescuing Prometheus. Vintage reprint (paperback),
originally published in 1998. ISBN 978–0679739388. 372 pages.

A retired professor of history and sociology explains the stories behind the
management of four large-scale, one-of-a-kind system projects: the Sage air defense
system, the Atlas rocket, the Arpanet (predecessor of the Internet), and the design
phase of the Big Dig (Boston Central Artery/Tunnel). The thesis of the book is that
such projects, in addition to unique engineering, also had to develop a different
kind of management style that can adapt continuously to change, is loosely coupled
with distributed control, and can identify a consensus among many players.

1.2.3 Henry Petroski. Design Paradigms: Case Histories of Error and Judgment in
Engineering. Cambridge University Press, 1994. ISBN: 978–0–521–46108–5
(hardcover), 978–0–521–46649–3 (paperback). 221 pages.

This remarkable book explores how the mindset of the designers (in the examples,
civil engineers) allowed them to make what in retrospect were massive design errors.
The failures analyzed range from the transportation of columns in Rome through
the 1982 collapse of the walkway in the Kansas City Hyatt Regency Hotel, with a
number of famous bridge collapses in between. Petroski analyzes particularly well
how a failure of a scaled-up design often reveals that the original design worked
correctly, but for a different reason than originally thought. There is no mention of

Saltzer & Kaashoek Ch. sr, p. 6 June 24, 2009 12:32 am

Suggestions for Further Reading SR–7

computer systems in this book, but it contains many lessons for computer system
designers.

1.2.4 Bruce Schneier. Applied Cryptography. John Wiley and Sons, second edition,
1996. ISBN: 978–0–471–12845–8 (hardcover), 978–0–471–11709–4 (paperback).
784 pages.

Here is everything you might want to know about cryptography and cryptographic
protocols, including a well-balanced perspective on what works and what doesn’t.
This book saves the need to read and sort through the thousand or so technical
papers on the subject. Protocols, techniques, algorithms, real-world considerations,
and source code can all be found here. In addition to being competent, it is also
entertainingly written and articulate. Be aware that a number of minor errors have
been reported in this book; if you are implementing code, it would be a good idea
to verify the details by consulting reading 1.3.13.

1.2.5 Radia Perlman. Interconnections, Second Edition: Bridges, Routers, Switches, and
Internetworking Protocols. Addison-Wesley, 1999. ISBN: 978–0–201–63448–8. 560
pages.

This book presents everything you could possibly want to know about how the
network layer actually works. The style is engagingly informal, but the content is
absolutely first-class, and every possible variation is explored. The previous edition
was simply titled Interconnections: Bridges and Routers.

1.2.6 Larry L. Peterson and Bruce S. Davie. Computer Networks: A Systems Approach.
Morgan Kaufman, fourth edition, 2007. ISBN: 978–0–12–370548–8. 848 pages.

This book provides a systems perspective on computer networks. It represents a
good balance of why networks are they way they are and a discussion of the
important protocols in use. It follows a layering model but presents fundamental
concepts independent of layering. In this way, the book provides a good discussion
of timeless ideas as well as current embodiments of those ideas.

1.3 Good books on related subjects deserving space on the systems
bookshelf

There are several other good books that many computer system professionals insist on
having on their bookshelves. They don’t appear in one of the previous categories because
their central focus is not on systems or because the purpose of the book is somewhat
narrower.

1.3.1 Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford
Stein. Introduction to Algorithms. McGraw-Hill, second edition, 2001. 1,184 pages.

Saltzer & Kaashoek Ch. sr, p. 7 June 24, 2009 12:32 am

SR–8 Suggestions for Further Reading

ISBN: 978–0–07–297054–8 (hardcover); 978–0–262–53196–2 (M.I.T. Press
paperback, not sold in U.S.A.)

1.3.2 Nancy A. Lynch. Distributed Algorithms. Morgan Kaufman, 1996. 872 pages
ISBN: 978–1–55860–348–6.

Occasionally, a system designer needs an algorithm. Corman et al. and Lynch’s
books are the place to find that algorithm, together with the analysis necessary to
decide whether or not it is appropriate for the application. In a reading list on
theory, these two books would almost certainly be in one of the highest categories,
but for a systems list they are better identified as supplementary.

1.3.3 Douglas K. Smith and Robert C. Alexander. Fumbling the Future. William
Morrow and Company, 1988. ISBN 978–0–688–06959–9 (hardcover),
978–1–58348266–7 (iuniverse paperback reprint). 274 pages.

The history of computing is littered with companies that attempted to add general-
purpose computer systems to an existing business—for example, Ford, Philco,
Zenith, RCA, General Electric, Honeywell, A. T. & T., and Xerox. None has
succeeded, perhaps because when the going gets tough the option of walking away
from this business is too attractive. This book documents how Xerox managed to
snatch defeat from the jaws of victory by inventing the personal computer, then
abandoning it.

1.3.4 Marshall Kirk McKusick, Keith Bostic, and Michael J. Karels. The Design and
Implementation of the 4.4BSD Operating System Addison-Wesley, second edition,
1996. ISBN 978–0–201–54979–9. 606 pages.

This book provides a complete picture of the design and implementation of the
Berkeley version of the UNIX operating system. It is well-written and full of detail.
The 1989 first edition, describing 4.3BSD, is still useful.

1.3.5 Katie Hafner and John Markoff. Cyberpunk: Outlaws and Hackers on the
Computer Frontier. Simon & Schuster (Touchstone), 1991, updated June 1995. ISBN
978–0–671–68322–1 (hardcover), 978–0–684–81862–7 (paperback). 368 pages.

This book si a readable, yet thorough, account of the scene at the ethical edges of
cyberspace: the exploits of Kevin Mitnick, Hans Hubner, and Robert Tappan
Morris. It serves as an example of a view from the media, but an unusually well-
informed view.

1.3.6 Deborah G. Johnson and Helen Nissenbaum. Computers, Ethics & Social
Values. Prentice-Hall, 1995. ISBN: 978–0–13–103110–4 (paperback). 714 pages.

A computer system designer is likely to consider reading a treatise on ethics to be a
terribly boring way to spend the afternoon, and some of the papers in this extensive

Saltzer & Kaashoek Ch. sr, p. 8 June 24, 2009 12:32 am

Suggestions for Further Reading SR–9

collection do match that stereotype. However, among the many scenarios, case
studies, and other reprints in this volume are a large number of interesting and
thoughtful papers about the human consequences of computer system design. This
collection is a good place to acquire the basic readings concerning privacy, risks,
computer abuse, and software ownership as well as professional ethics in computer
system design.

1.3.7 Carliss Y. Baldwin and Kim B. Clark. Design Rules: Volume 1, The Power of
Modularity. M.I.T. Press, 2000. ISBN 978–0–262–02466–2. 471 pages.

This book focuses wholly on modularity (as used by the authors, this term merges
modularity, abstraction, and hierarchy) and offers an interesting representation of
interconnections to illustrate the power of modularity and of clean, abstract
interfaces. The work uses these same concepts to interpret several decades of
developments in the computer industry. The authors, from the Harvard Business
School, develop a model of the several ways in which modularity operates by
providing design options and making substitution easy. By the end of the book,
most readers will have seen more than they wanted to know, but there are some
ideas here that are worth at least a quick reading. (Despite the “Volume 1” in the
title, there does not yet seem to be a Volume 2.)

1.3.8 Andrew S. Tanenbaum. Computer Networks. Prentice-Hall, fourth edition,
2003. ISBN: 978–0–13–066102–9. 813 pages.

This book provides a thorough tutorial introduction to the world of networks. Like
the same author’s book on operating systems (see reading 1.2.1), this one also tends
to emphasize the mechanics. But again it is a storehouse of up-to-date street
knowledge, this time about computer communications, that is needed to get into
(or perhaps avoid the need to consult) the rest of the literature. The book includes
a selective and thoughtfully annotated bibliography on computer networks. An
abbreviated version of this same material, sufficient for many readers, appears as a
chapter of the operating systems book.

1.3.9 David L. Mills. Computer Network Time Synchronization: The Network Time
Protocol. CRC Press/Taylor & Francis, 2006. ISBN: 978–0849358050. 286 pages.

A comprehensive but readable explanation of the Network Time Protocol (NTP),
an under-the-covers protocol of which most users are unaware: NTP coordinates
multiple timekeepers and distributes current date and time information to both
clients and servers.

1.3.10 Robert G. Gallager. Principles of Digital Communication. Cambridge
University Press, 2008. ISBN 978–0–521–87907–1. 422 pages.

This intense textbook focuses on the theory that underlies the link layer of data

Saltzer & Kaashoek Ch. sr, p. 9 June 24, 2009 12:32 am

SR–10 Suggestions for Further Reading

communication networks. It is not for casual browsing or for those easily
intimidated by mathematics, but it is an excellent reference source for analysis.

1.3.11 Daniel P. Siewiorek and Robert S. Swarz. Reliable Computer Systems: Design
and Evaluation. A. K. Peters Ltd., third edition, 1998. ISBN 978–1–56881–092–8.
927 pages.

This is probably the best comprehensive treatment of reliability that is available,
with well-explained theory and reprints of several case studies from recent literature.
Its only defect is a slight “academic” bias in that little judgment is expressed on
alternative methods, and some examples are without warning of systems that were
never really deployed. The first, 1982, edition, with the title The Theory and Practice
of Reliable System Design, contains an almost completely different (and much older)
set of case studies.

1.3.12 Bruce Schneier. Secrets & Lies/Digital Security in a Networked World. John
Wiley & Sons, 2000. ISBN 978–0–471–25311–2 (hardcover), 978
0–471–45380–2 (paperback) 432 pages.

This overview of security from a systems perspective provides much motivation,
many good war stories (though without citations), and a high-level outline of how
one achieves a secure system. Being an overview, it provides no specific guidance on
the mechanics, other than to rely on people who know what they are doing. This is
an excellent book, particularly for the manager who wants to go beyond the
buzzwords and get an idea of what achieving computer system security involves.

1.3.13 A[lfred] J. Menezes, Paul C. Oorschot, and Scott A. Vanstone. Handbook of
Applied Cryptography. CRC Press, 1997. ISBN: 978–08493–8523–0. 816 pages.

This book is exactly what its title claims: a complete handbook on putting
cryptography to work. It lacks the background and perspective of reading 1.2.4,
and it is extremely technical, which makes parts of it inaccessible to less
mathematically inclined readers. But its precise definitions and careful explanations
make this by far the best reference book available on the subject.

1.3.14 Johannes A. Buchman. Introduction to Cryptography. Springer, 2nd edition,
2004. ISBN 978–0–387–21156–5 (hardcover), 978–0–387–20756–8 (paperback).
335 pages.

Buchman provides a nice, concise introduction to number theory for cryptography.

1.3.15 Simson Garfinkel and Gene [Eugene H.] Spafford. Practical UNIX and
Internet Security. O'Reilly & Associates, Sebastopol, California, third edition, 2003.
ISBN 978–59600323–4 (paperback). 986 pages.

This is a really comprehensive guide to how to run a network-attached UNIX system

Saltzer & Kaashoek Ch. sr, p. 10 June 24, 2009 12:32 am

Suggestions for Further Reading SR–11

with some confidence that it is relatively safe against casual intruders. In addition
to providing practical information for a system manager, it incidentally gives the
reader quite a bit of insight into the style of thinking and design needed to provide
security.

1.3.16 Simson Garfinkel. PGP: Pretty Good Privacy. O’Reilly & Associates,
Sebastopol, California, 1995. ISBN: 978–1–56592–098–9 (paperback). 430 pages.

Nominally a user’s guide to the PGP encryption package developed by Phil
Zimmermann, this book starts out with six readable overview chapters on the
subject of encryption, its history, and the political and licensing environment that
surrounds encryption systems. Even the later chapters, which give details on how
to use PGP, are filled with interesting tidbits and advice applicable to all encryption
uses.

1.3.17 Warwick Ford and Michael S. Baum. Secure Electronic Commerce: Building
the Infrastructure for Digital Signatures and Encryption. Prentice Hall, second edition,
2000. ISBN: 978–0–13–027276–8. 640 pages.

Although the title implies more generality, this book is about public key
infrastructure: certificate authorities, certificates, and their legal status in practice.
The authors are a technologist (Ford) and a lawyer (Baum). The book provides
thorough coverage and is a good way to learn a lot about the subject. Because the
status of this topic changes rapidly, however, it should be considered a snapshot
rather than the latest word.

1.4 Ways of thinking about systems
Quite a few books try to generalize the study of systems. They tend to be so abstract,
however, that it is hard to see how they apply to anything, so none of them are listed
here. Instead, here are five old but surprisingly relevant papers that illustrate ways to
think about systems. The areas touched are allometry, aerodynamics, hierarchy, ecology,
and economics.

1.4.1 J[ohn] B[urdon] S[anderson] Haldane (1892–1964). On being the right size.
In Possible Worlds and Other Essays, pages 20–28. Harper and Brothers Publishers,
1928. Also published by Chatto & Windus, London, 1927, and recently reprinted in
John Maynard Smith, editor, On Being the Right Size and Other Essays, Oxford
University Press, 1985. ISBN: 0–19–286045–3 (paperback), pages 1–8.

This is the classic paper that explains why a mouse the size of an elephant would
collapse if it tried to stand up. It provides lessons on how to think about
incommensurate scaling in all kinds of systems.

Saltzer & Kaashoek Ch. sr, p. 11 June 24, 2009 12:32 am

SR–12 Suggestions for Further Reading

1.4.2 Alexander Graham Bell (1847–1922). The tetrahedral principle in kite
structure. National Geographic Magazine 14, 6 (June 1903), pages 219–251.

This classic paper demonstrates that arguments based on scale can be quite subtle.
This paper—written at a time when physicists were still debating the theoretical
possibility of building airplanes—describes the obvious scale argument against
heavier-than-air craft and then demonstrates that one can increase the scale of an
airfoil in different ways and that the obvious scale argument does not apply to all
those ways. (This paper is a rare example of unreviewed vanity publication of an
interesting engineering result. The National Geographic was—and still is—a Bell
family publication.)

1.4.3 Herbert A. Simon (1916–2001). The architecture of complexity. Proceedings of
the American Philosophical Society 106, 6 (December 1962), pages 467–482.
Republished as Chapter 4, pages 84–118, of The Sciences of the Artificial, M.I.T. Press,
Cambridge, Massachusetts, 1969. ISBN: 0–262–191051–6 (hardcover);
0–262–69023–3 (paperback).

This paper is a tour-de-force of how hierarchy is an organizing tool for complex
systems. The examples are breathtaking in their range and scope—from watch
making and biology through political empires. The style of thinking shown in this
paper suggests that it is not surprising that Simon later received the 1978 Nobel
Prize in economics.

1.4.4 LaMont C[ook] Cole (1916–1978). Man’s effect on nature. The Explorer:
Bulletin of the Cleveland Museum of Natural History 11, 3 (Fall 1969), pages 10–16.

This brief article looks at the Earth as an ecological system in which the actions of
humans lead both to surprises and to propagation of effects. It describes a classic
example of the propagation of effects: attempts to eliminate malaria in North
Borneo led to an increase in the plague and roofs caving in.

1.4.5 Garrett [James] Hardin (1915–). The tragedy of the commons. Science 162,
3859 (December 13, 1968), pages 1243–1248. Extensions of “the tragedy of the
commons”. Science 280, 5364 (May 1, 1998), pages 682–683.

This seminal paper explores a property of certain economic situations in which
Adam Smith's “invisible hand” works against everyone's interest. It is interesting for
its insight into how to predict things about otherwise hard-to-model systems. In
revisiting the subject 30 years later, Hardin suggested that the adjective
“unmanaged” should be placed in front of “commons”. Rightly or wrongly, the
Internet is often described as a system to which the tragedy of the (unmanaged)
commons applies.

Saltzer & Kaashoek Ch. sr, p. 12 June 24, 2009 12:32 am

Suggestions for Further Reading SR–13

1.5 Wisdom about system design
Before reading anything else on this topic, one should absorb the book by Brooks, The
Mythical Man-Month, reading 1.1.3 and the essay by Simon, “The architecture of com
plexity”, reading 1.4.3. The case studies on control of complexity in Section 1.9 also are
filled with wisdom.

1.5.1 Richard P. Gabriel. Worse is better. Excerpt from LISP: good news, bad news,
how to win BIG, AI Expert 6, 6 (June 1991), pages 33–35.

This paper explains why doing the thing expediently sometimes works out to be a
better idea than doing the thing right.

1.5.2 Henry Petroski. Engineering: History and failure. American Scientist 80, 6
(November–December 1992), pages 523–526.

Petroski provides insight along the lines that one primary way that engineering
makes progress is by making mistakes, studying them, and trying again. Petroski
also visits this theme in two books, the most recent being reading 1.2.3.

1.5.3 Fernando J. Corbató. On building systems that will fail. Communications of the
ACM 34, 9 (September 1991), pages 72–81. (Reprinted in the book by Johnson and
Nissenbaum, reading 1.3.6.)

The central idea in this 1991 Turing Award Lecture is that all ambitious systems will
have failures, but those that were designed with that expectation are more likely to
eventually succeed.

1.5.4 Butler W. Lampson. Hints for computer system design. Proceedings of the
Ninth ACM Symposium on Operating Systems Principles, in Operating Systems Review
17, 5 (October 1983), pages 33–48. Later republished, but with less satisfactory copy
editing, in IEEE Software 1, 1 (January 1984), pages 11–28.

This encapsulation of insights is expressed as principles that seem to apply to more
than one case. It is worth reading by all system designers.

1.5.5 Jon Bentley. The back of the envelope—programming pearls. Communications
of the ACM 27, 3 (March 1984), pages 180–184.

One of the most important tools of a system designer is the ability to make rough
but quick estimates of how big, how long, how fast, or how expensive a design will
be. This brief note extols the concept and gives several examples.

1.5.6 Jeffrey C. Mogul. Emergent (mis)behavior vs. complex software systems.
Proceedings of the First European Conference on Computer Systems (EuroSys 2006,
Leuven, Belgium), pages 293-304. ACM Press, 2006, ISBN 1-59593-322-0. Also in

Saltzer & Kaashoek Ch. sr, p. 13 June 24, 2009 12:32 am

SR–14 Suggestions for Further Reading

Operating Systems Review 40, 4 (October 2006).
This paper explores in depth the concept of emergent properties described in
Chapter 1, providing a nice collection of examples and tying together issues and
problems that arise throughout computer and network system design. It also
suggests a taxonomy of emergent properties, lays out suggestions for future
research, and includes a comprehensive and useful bibliography.

1.5.7 Pamela Samuelson, editor. Intellectual property for an information age.
Communications of the ACM 44, 2 (February 2001), pages 67–103.

This work is a special section comprising several papers about the challenges of
intellectual property in a digital world. Each of the individual articles is written by
a member of a new generation of specialists who understand both technology and
law well enough to contribute thoughtful insights to both domains.

1.5.8 Mark R. Chassin and Elise C. Becher. The wrong patient. Annals of Internal
Medicine 136 (June 2002),pages 826–833.

This paper is a good example, first, of how complex systems fail for complex reasons
and second, of the value of the “keep digging” principle. The case study presented
here centers on a medical system failure in which the wrong patient was operated
on. Rather than just identifying the most obvious reason, the case study concludes
that there were a dozen or more opportunities in which the error that led to the
failure should have been detected and corrected, but for various reasons all of those
opportunities were missed.

1.5.9 P[hillip] J. Plauger. Chocolate. Embedded Systems Programming 7, 3 (March
1994), pages 81–84.

This paper provides a remarkable insight based on the observation that many
failures in a bakery can be remedied by putting more chocolate into the mixture.
The author manages, with only a modest stretch, to convert this observation into a
more general technique of keeping recovery simple, so that it is likely to succeed.

1.6 Changing technology and its impact on systems

1.6.1 Gordon E. Moore. Cramming more components onto integrated circuits.
Electronics 38, 8 (April 19, 1965), pages 114–117. Reprinted in Proceedings of the
IEEE 86, 1 (January 1998), pages 82–85.

This paper defined what we now call Moore’s law. The phenomena Moore describes
have driven the rate of technology improvement for more than four decades. This
paper articulates why and displays the first graph to plot Moore’s law, based on five
data points.

Saltzer & Kaashoek Ch. sr, p. 14 June 24, 2009 12:32 am

Suggestions for Further Reading SR–15

1.6.2 John L. Hennessy and Norman P. Jouppi. Computer technology and
architecture: An evolving interaction. IEEE Computer 24, 9 (September 1991), pages
19–29.

Although some of the technology examples are a bit of out of date, the systems
thinking and the paper’s insights remain relevant.

1.6.3 Ajanta Chakraborty and Mark R. Greenstreet. Efficient self-timed interfaces
for crossing clock domains. Proceedings of the Ninth International Symposium on
Asynchronous Circuits and Systems, IEEE Computer Society (May 2003), pages 78-88.
ISBN 0-7695-1898-2.

This paper addresses the challenge of having a fast, global clock on a chip by
organizing the resources on a chip as a number of synchronous islands connected
by asynchronous links. This design may pose problems for constructing perfect
arbiters (see Section 5.2.8).

1.6.4 Anant Agarwal and Markus Levy. The KILL rule for multicore. 44th
ACM/IEEE Conference on Design Automation (June 2007), pages 750-753. ISBN:
978-1-59593-627-1

This short paper looks ahead to multiprocessor chips that contain not just four or
eight, but thousands of processors. It articulates a rule for power-efficient designs:
Kill If Less than Linear. For example, the designer should increase the chip area
devoted to a resource such as a cache only if for every 1% increase in area there is at
least a 1% increase in chip performance. This rule focuses attention on those design
elements that make most effective use of the chip area and from back-of-the
envelope calculations favors increasing processor count (which the paper assumes
to provide linear improvement) over other alternatives.

1.6.5 Stephen P. Walborn et al. Quantum erasure. American Scientist 91, 4 (July-
August 2003), pages 336–343.

This paper was written by physicists and requires a prerequisite of undergraduate-
level modern physics, but it manages to avoid getting into graduate-level quantum
mechanics. The strength of the article is its clear identification of what is reasonably
well understood and what is still a mystery about these phenomena. That
identification seems to be of considerable value both to students of physics, who
may be inspired to tackle the parts that are not understood, and to students of
cryptography, because knowing what aspects of quantum cryptography are still
mysteries may be important in deciding how much reliance to place on it.

Saltzer & Kaashoek Ch. sr, p. 15 June 24, 2009 12:32 am

SR–16 Suggestions for Further Reading

1.7 Dramatic visions
Once in a while a paper comes along that either has a dramatic vision of what future sys
tems might do or takes a sweeping new look at some aspect of systems design that had
previously been considered to be settled. The ideas found in the papers listed in reading
Sections 1.7 and 1.8 often become part of the standard baggage of all future writers in
the area, but the reprises rarely do justice to the originals, which are worth reading if only
to see how the mind of a visionary (or revisionist) works.

1.7.1 Vannevar Bush. As we may think. Atlantic Monthly 176, 1 (July 1945), pages
101–108. Reprinted in Adele J. Goldberg, A History of Personal Workstations,
Addison-Wesley, 1988, pages 237–247 and also in Irene Greif, ed., Computer-
Supported Cooperative Work: A Book of Readings, Morgan Kaufman, 1988. ISBN
0–934613–57–5.

Bush looked at the (mostly analog) computers of 1945 and foresaw that they would
someday be used as information engines to augment the human intellect.

1.7.2 John G. Kemeny, with comments by Robert M. Fano and Gilbert W. King. A
library for 2000 A.D. In Martin Greenberger, editor, Management and the Computer
of the Future, M.I.T. Press and John Wiley, 1962, pages 134–178. (Out of print.)

It has taken 40 years for technology to advance far enough to make it possible to
implement Kemeny's vision of how the library might evolve when computers are
used in its support. Unfortunately, the engineering that is required still hasn’t been
done, so the vision has not yet been realized, but Google has stated a similar vision
and is making progress in realizing it; see reading 3.2.4.

1.7.3 [Alan C. Kay, with the] Learning Research Group. Personal Dynamic Media.
Xerox Palo Alto Research Center Systems Software Laboratory Technical Report
SSL–76–1 (undated, circa March 1976).

Alan Kay was imagining laptop computers and how they might be used long before
most people had figured out that desktop computers might be a good idea. He gave
many inspiring talks on the subject, but he rarely paused long enough to write
anything down. Fortunately, his colleagues captured some of his thoughts in this
technical report. An edited version of this report, with some pictures accidentally
omitted, appeared in a journal in the year following this technical report: Alan [C.]
Kay and Adele Goldberg. Personal dynamic media. IEEE Computer 10, 3 (March
1977), pages 31–41. This paper was reprinted with omitted pictures restored in
Adele J. Goldberg, A History of Personal Workstations, Addison-Wesley, 1988, pages
254–263. ISBN: 0–201–11259-0.

1.7.4 Doug[las] C. Engelbart. Augmenting Human Intellect: A Conceptual
Framework. Research Report AFOSR–3223, Stanford Research Institute, Menlo

Saltzer & Kaashoek Ch. sr, p. 16 June 24, 2009 12:32 am

Suggestions for Further Reading SR–17

Park, California, October 1962. Reprinted in Irene Greif, ed., Computer-Supported
Cooperative Work: A Book of Readings, Morgan Kaufman, 1988. ISBN
0–934613–57–5.

In the early 1960’s Engelbart saw that computer systems would someday be useful
in myriad ways as personal tools. Unfortunately, the technology of his time,
multimillion-dollar mainframes, was far too expensive to make his vision practical.
Today’s personal computers and engineering workstations have now incorporated
many of his ideas.

1.7.5 F[ernando] J. Corbató and V[ictor] A. Vyssotsky. Introduction and overview
of the Multics system. AFIPS 1965 Fall Joint Computer Conference 27, part I (1965),
pages 185–196.

Working from a few primitive examples of time-sharing systems, Corbató and his
associates escalated the vision to an all-encompassing computer utility. This paper
is the first in a set of six in the same proceedings, pages 185–247.

1.8 Sweeping new looks

1.8.1 Jack B. Dennis and Earl C. Van Horne. Programming semantics for
multiprogrammed computations. Communications of the ACM 9, 3 (March 1966),
pages 143–155.

This paper set the ground rules for thinking about concurrent activities, both the
vocabulary and the semantics.

1.8.2 J. S. Liptay. Structural aspects of the System/360 model 85: II. The cache. IBM
Systems Journal 7, 1 (1968), pages 15–21.

The idea of a cache, look-aside, or slave memory had been suggested independently
by Francis Lee and Maurice Wilkes some time around 1963, but it was not until
the advent of LSI technology that it became feasible to actually build one in
hardware. As a result, no one had seriously explored the design space options until
the designers of the IBM System/360 model 85 had to come up with a real
implementation. Once this paper appeared, a cache became a requirement for most
later computer architectures.

1.8.3 Claude E. Shannon. The communication theory of secrecy systems. Bell System
Technical Journal 28, 4 (October 1949), pages 656–715.

This paper provides the underpinnings of the theory of cryptography, in terms of
information theory.

1.8.4 Whitfield Diffie and Martin E. Hellman. Privacy and authentication: An

Saltzer & Kaashoek Ch. sr, p. 17 June 24, 2009 12:32 am

SR–18 Suggestions for Further Reading

introduction to cryptography. Proceedings of the IEEE 67, 3 (March 1979), pages
397–427.

This is the first really technically competent paper on cryptography since Shannon
in the unclassified literature, and it launched modern unclassified study. It includes
a complete and scholarly bibliography.

1.8.5 Whitfield Diffie and Martin E. Hellman. New directions in cryptography.
IEEE Transactions on Information Theory IT–22, 6 (November 1976), pages
644–654.

Diffie and Hellman were the second inventors of public key cryptography (the first
inventor, James H. Ellis, was working on classified projects for the British
Government Communications Headquarters at the time, in 1970, and was not able
to publish his work until 1987). This is the paper that introduced the idea to the
unclassified world.

1.8.6 Charles T. Davies, Jr. Data processing spheres of control. IBM Systems Journal
17, 2 (1978), pages 179–198. Charles T. Davies, Jr. Recovery semantics for a DB/DC
system. 1973 ACM National Conference 28 (August 1973), pages 136–141.

This pair of papers—vague but thought-provoking—gives a high level discussion
of “spheres of control”, a notion closely related to atomicity. Everyone who writes
about transactions mentions that they found these two papers inspiring.

1.8.7 Butler W. Lampson and Howard Sturgis. Crash recovery in a distributed data
storage system. Working paper, Xerox Palo Alto Research Center, November 1976,
and April 1979. (Never published)

Jim Gray called the 1976 version of this paper “an underground classic.” The 1979
version presents the first good definition of models of failure. Both describe
algorithms for coordinating distributed updates; they are sufficiently different that
both are worth reading.

1.8.8 Leonard Kleinrock. Communication Nets: Stochastic Message Flow and Delay.
McGraw Hill, 1964. Republished by Dover, 2007. ISBN: 0-486-45880-6. 224
pages.

1.8.9 Paul Baran, S. Boehm, and J. W. Smith. On Distributed Communications. A
series of 11 memoranda of the RAND Corporation, Santa Monica, California,
August 1964.

Since the growth in the Internet’s popularity, there has been considerable discussion
about who first thought of packet switching. It appears that Leonard Kleinrock,
working in 1961 on his M.I.T. Ph.D. thesis on more effective ways of using wired
networks, and Paul Baran and his colleagues at Rand, working in 1961 on

Saltzer & Kaashoek Ch. sr, p. 18 June 24, 2009 12:32 am

Suggestions for Further Reading SR–19

survivable communications, independently proposed the idea of packet switching
at about the same time; both wrote internal memoranda in 1961 describing their
ideas. Neither one actually used the words “packet switching”, however; that was
left to Donald Davies of the National Physical Laboratory who coined that label
several years later.

1.8.10 Lawrence G. Roberts and Barry D. Wessler. Computer network development
to achieve resource sharing. AFIPS Spring Joint Computer Conference 36 (May 1970),
pages 543–549.

This paper and four others presented at the same conference session (pages
543–597) represent the first public description of the ARPANET, the first
successful packet-switching network and the prototype for the Internet. Two years
later, AFIPS Spring Joint Computer Conference 40 (1972), pages 243–298, presented
five additional, closely related papers. The discussion of priority concerning reading
1.8.8 and reading 1.8.9 is somewhat academic; it was Roberts’s sponsorship of the
ARPANET that demonstrated the workability of packet switching.

1.8.11 V[inton G.] Cerf et al. Delay-Tolerant Networking Architecture. Request For
Comments RFC 4838, Internet Engineering Task Force (April 1997).

This document describes an architecture that evolved from a vision for an
Interplanetary Internet, an Internet-like network for interplanetary distances. This
document introduces several interesting ideas and highlights some assumptions that
people make in designing networks without realizing it. NASA performed its first
successful tests of a prototype implementation of a delay-tolerant network.

1.8.12 Jim Gray et al. Terascale Sneakernet. Using Inexpensive Disks for Backup,
Archiving, and Data Exchange. Microsoft Technical Report MS-TR-02-54 (May
2002). http://arxiv.org/pdf/cs/0208011)

Sneakernet is a generic term for transporting data by physically delivering a storage
device rather than sending it over a wire. Sneakernets are attractive when data
volume is so large that electronic transport will take a long time or be too expensive,
and the latency until the first byte arrives is less important. Early sneakernets
exchanged programs and data using floppy disks. More recently, people have
exchanged data by burning CDs and carrying them. This paper proposes to build a
sneakernet by sending hard disks, encapsulated in a small, low-cost computer called
a storage brick. This approach allows one to transfer by mail terabytes of data across
the planet in a few days. By virtue of including a computer and operating system,
it minimizes compatibility problems that arise when transferring the data to
another computer.

Saltzer & Kaashoek Ch. sr, p. 19 June 24, 2009 12:32 am

http://arxiv.org/pdf/cs/0208011)

SR–20 Suggestions for Further Reading

Several other papers listed under specific topics also provide sweeping new looks or have
changed the way people that think about systems: Simon, The architecture of complex
ity, reading 1.4.3; Thompson, Reflections on trusting trust, reading 11.3.3; Lampson,
Hints for computer system design, reading 1.5.4; and Creasy’s VM/370 paper, reading
5.6.1

1.9 Keeping big systems under control:

1.9.1 F[ernando] J. Corbató and C[harles] T. Clingen. A managerial view of the
Multics system development. In Peter Wegner, Research Directions in Software
Technology, M.I.T. Press, Cambridge, Massachusetts, 1979, pages 139–158. ISBN:
0–262–23096–8.

1.9.2 W[illiam A.] Wulf, R[oy] Levin, and C. Pierson. Overview of the Hydra
operating system development. Proceedings of the Fifth ACM Symposium on Operating
Systems Principles, in Operating Systems Review 9, 5 (November 1975), pages
122–131.

1.9.3 Thomas R. Horsley and William C. Lynch. Pilot: A software engineering case
study. Fourth International Conference on Software Engineering (September 1979),
pages 94–99.

These three papers are early descriptions of the challenges of managing and
developing large systems. They are still relevant and easy to read, and provide
complementary insights.

1.9.4 Effy Oz. When professional standards are lax: The CONFIRM failure and its
lessons. Communications of the ACM 37, 10 (October 1994), pages 30–36.

CONFIRM is an airline/hotel/rental-car reservation system that never saw the light
of day despite four years of work and an investment of more than $100M. It is one
of many computer system developments that went out of control and finally were
discarded without ever having been placed in service. One sees news reports of
software disasters of similar magnitude a few times each year. It is difficult to obtain
solid facts about system development failures because no one wants to accept the
blame, especially when lawsuits are pending. This paper suffers from a shortage of
facts and an over-simplistic recommendation that better ethics are all that are
needed to solve the problem. (It seems likely that the ethics and management
problems simply delayed recognition of the inevitable.) Nevertheless, it provides a
sobering view of how badly things can go wrong.

1.9.5 Nancy G. Leveson and Clark S. Turner. An investigation of the Therac-25

Saltzer & Kaashoek Ch. sr, p. 20 June 24, 2009 12:32 am

Suggestions for Further Reading SR–21

accidents. Computer 26, 7 (July 1993), pages 18–41. (Reprinted in reading 1.3.6.)
This is another sobering view of how badly things can go wrong. In this case, the
software controller for a high-energy medical device was inadequately designed; the
device was placed in service, and lethal injuries ensued. This paper manages to
inquire quite deeply into the source of the problems. Unfortunately, similar
mistakes have been made since; see, for example, United States Nuclear Regulatory
Commission Information Notice 2001-8s1 (June 2001), which describes radiation
therapy overexposures in Panama.

1.9.6 Joe Morgenstern. City perils: The fifty-nine-story crisis. The New Yorker 71, 14
(May 29, 1995), pages 45–53.

This article discusses how an engineer responded to the realization that a skyscraper
he had designed was in danger of collapsing in a hurricane.

1.9.7 Eric S. Raymond. The cathedral and the bazaar. in The Cathedral and The
Bazaar: Musings on Linux and Open Source by an Accidental Revolutionary, pages 19
64. O’Reilly Media Inc., 2001. ISBN: 978–0596001087, 241 pages.

The book is based on a white paper of the same title that compares two styles of
software development: the Cathedral model, which is used mostly by commercial
software companies and some open-source projects such as the BSD operating
system; and the Bazaar model, which is exemplified by development of the
GNU/Linux operating system. The work argues that the Bazaar model leads to
better software because the openness and independence of Bazaar allow anyone to
become a participant and to look at anything in the system that seems of interest:
“Given enough eyeballs, all bugs are shallow”.

1.9.8 Philip M Boffey. Investigators agree N. Y. blackout of 1977 could have been
avoided. Science 201, 4360 (September 15, 1978), pages 994–996.

This is a fascinating description of how the electrical generation and distribution
system of New York’s Consolidated Edison fell apart when two supposedly tolerable
faults occurred in close succession, recovery mechanisms did not work as expected,
attempts to recover manually got bogged down by the system’s complexity, and
finally things cascaded out of control.

2 Elements of Computer System Organization
To learn more about the basic abstractions of memory and interpreters, the book Com
puter Architecture by Patterson and Hennessy (reading 1.1.1) is one of the best sources.
Further information about the third basic abstraction, communication links, can be
found in the readings for Section 7.

Saltzer & Kaashoek Ch. sr, p. 21 June 24, 2009 12:32 am

SR–22 Suggestions for Further Reading

2.1 Naming systems

2.1.1 Bruce [G.] Lindsay. Object naming and catalog management for a distributed
database manager. Proceedings of the Second International Conference on Distributed
Computing Systems, Paris, France (April 1981), pages 31–40. Also IBM San Jose
Research Laboratory Technical Report RJ2914 (August 1980). 17 pages.

This paper a tutorial treatment of names as used in database systems, begins with a
better-than-average statement of requirements, and then demonstrates how those
requirements were met in the R* distributed database management system.

2.1.2 Yogen K. Dalal and Robert S. Printis. 48-bit absolute Internet and Ethernet
host numbers. Proceedings of the Seventh Data Communications Symposium, Mexico
City, Mexico (October 1981), pages 240–245. Also Xerox Office Products Division
Technical Report OPD–T8101 (July 1981), 14 pages.

This paper describes how hardware addresses are handled in the Ethernet local area
network.

2.1.3 Theodor Holm Nelson. Literary Machines, Ed. 87.1. Project Xanadu, San
Antonio, Texas, 1987. ISBN 0–89347–056–2 (paperback). Various pagings.

Project Xanadu is an ambitious vision of a future in which books are replaced by
information organized in the form of a naming network, in the form that today is
called “hypertext”. The book, being somewhat non-linear, is a primitive example of
what Nelson advocates.

2.2 The UNIX® system
The following readings and the book by Marshall McKusick et al., reading 1.3.4, are
excellent sources on the UNIX system to follow up the case study in Section 2.5. A good,
compact summary of its main features can be found in Tanenbaum’s operating systems
book, reading 1.2.1, which also covers Linux.

2.2.1 Dennis M. Ritchie and Ken [L.] Thompson. The UNIX time-sharing system.
Bell System Technical Journal 57, 6, part 2 (1978), pages 1905–1930.

This paper describes an influential operating system with low-key, but carefully
chosen and hard-to-discover, objectives. The system provides a hierarchical catalog
structure and succeeds in keeping naming completely distinct from file
management. An earlier version of this paper appeared in the Communications of the
ACM 17, 7 (July 1974), pages 365–375, after being presented at the Fourth ACM
Symposium on Operating Systems Principles. The UNIX system evolved rapidly
between 1973 and 1978, so the BSTJ version, though harder to find, contains
significant additions, both in insight and in technical content.

Saltzer & Kaashoek Ch. sr, p. 22 June 24, 2009 12:32 am

Suggestions for Further Reading SR–23

2.2.2 John Lions. Lions’ Commentary on UNIX 6th Edition with Source Code. Peer-to
peer communications, 1977. ISBN: 978–1–57398–013–7, 254 pages.

This book contains the source code for UNIX Version 6, with comments to explain
how it works. Although Version 6 is old, the book remains an excellent starting
point for understanding how the system works from the inside because both the
source code and the comments are short and succinct. For decades this book was
part of the underground literature from which designers learned about the UNIX

system but now it is available to the public.

3 The Design of Naming Schemes
Almost any system has a naming plan, and many of the interesting naming plans can be
found in papers that describe a larger system. Any reader interested in naming should
study the Domain Name System, reading 4.3, and the topic of Section 4.4.

3.1 Addressing architectures
Several early sources still contain some of the most accessible explanations of designs that
incorporate advanced naming features directly in hardware.

3.1.1 Jack B. Dennis. Segmentation and the design of multiprogrammed computer
systems. Journal of the ACM 12, 4 (October 1965), pages 589–602.

This is the original paper outlining the advantages of providing naming support in
hardware architecture.

3.1.2 R[obert] S. Fabry. Capability-based addressing. Communications of the ACM
17, 7 (July 1974), pages 403–412.

This is the first comprehensive treatment of capabilities, a mechanism introduced
to enforce modularity but actually more of a naming feature.

3.1.3 Elliott I. Organick. Computer System Organization, The B5700/B6700 Series.
Academic Press, 1973. ISBN: 0–12–528250–8, 132 pages.

The Burroughs Descriptor system explained in this book is apparently the only
example of a hardware-supported naming system actually implemented before the
advent of microprogramming.

3.1.4 Elliott I. Organick. The Multics System: An Examination of Its Structure. M.I.T.
Press, Cambridge, Massachusetts, 1972. ISBN: 0–262–15012–3. 392 pages.

This book explores every detail and ramification of the extensive naming
mechanisms of Multics, both in the addressing architecture and in the file system.

Saltzer & Kaashoek Ch. sr, p. 23 June 24, 2009 12:32 am

SR–24 Suggestions for Further Reading

3.1.5 R[oger] M. Needham and A[ndrew] D. Birrell. The CAP filing system.
Proceedings of the Sixth ACM Symposium on Operating Systems Principles, in Operating
Systems Review 11, 5 (November 1977), pages 11–16.

The CAP file system is one of the few implemented examples of a genuine naming
network.

3.2 Examples

3.2.1 Paul J. Leach, Bernard L. Stumpf, James A. Hamilton, and Paul H. Levine.
UIDs as internal names in a distributed file system. In ACM SIGACT–SIGOPS
Symposium on Principles of Distributed Computing, Ottawa, Ontario (August 18–20,
1982), pages 34–41.

The Apollo DOMAIN system supports a different model for distributed function. It
provides a shared primary memory called the Single Level Store, which extends
transparently across the network. It is also one of the few systems to make
substantial use of unstructured unique identifiers from a compact set as object
names. This paper focuses on this latter issue.

3.2.2 Rob Pike et al. Plan 9 from Bell Labs. Computing Systems 8, 3 (Summer 1995),
pages 221–254. An earlier version by Rob Pike, Dave Presotto, Ken Thompson, and
Howard Trickey appeared in Proceedings of the Summer 1990 UKUUG Conference
(1990), London, pages 1–9.

This paper describes a distributed operating system that takes the UNIX system idea
that every resource is a file one step further by using it also for network and window
system interactions. It also extends the file idea to a distributed system by defining
a single file system protocol for access to all resources, whether they are local or
remote. Processes can mount any remote resources into their name space, and to the
user these remote resources behave just like local resources. This design makes users
perceive the system as an easy-to-use time-sharing system that behaves like a single
powerful computer, instead of a collection of separate computers.

3.2.3 Tim Berners–Lee et al. The World Wide Web. Communications of the ACM
37,8 (August 1994), pages 76–82.

Many of the publications about the World Wide Web are available only on the Web,
with a good starting point being the home page of the World Wide Web
Consortium at <http://w3c.org/>.

3.2.4 Sergey Brin and Lawrence Page. The anatomy of a large-scale hypertextual web
search engine. Proceedings of the 7th WWW Conference, Brisbane, Australia (April

Saltzer & Kaashoek Ch. sr, p. 24 June 24, 2009 12:32 am

<http://w3c.org/>

Suggestions for Further Reading SR–25

1998). Also in Computer Networks 30 (1998), pages 107–117.

This paper describes an early version of Google’s search engine. It also introduces

the idea of page rank to sort the results to a query in order of importance. Search is

a dominant way in which users “name” Web pages.

3.2.5 Bryan Ford et al. Persistent personal names for globally connected mobile

devices. Proceedings of the Seventh USENIX Symposium on Operating Systems Design

and Implementation (November 2006), pages 233–248.

This paper describes a naming system for personal devices. Each device is a root of

its own naming network and can use short, convenient names for other devices

belonging to the same user or belonging to people in the user’s social network. The

implementation of the naming system allows devices to be disconnected from the

Internet and resolve names of devices that are reachable. The first five pages lay out

the basic naming plan. Later sections explain security properties and a security-

based implementation, which involves material of Chapter 11[on-line].

4 Enforcing Modularity with Clients and Services
Many systems are organized in a client/service style. A system that provides a good case
study is the Network File System (see Section 4.4). The following papers provide some
other examples.

4.1 Remote procedure call

4.1.1 Andrew D. Birrell and Bruce Jay Nelson. Implementing remote procedure
calls. ACM Transactions on Computer Systems 2, 1 (February 1984), pages 39–59.

A well-written paper that shows first, the simplicity of the basic idea, second, the

complexity required to deal with real implementations, and third, the refinements

needed for high effectiveness.

4.1.2 Andrew Birrell, Greg Nelson, Susan Owicki, and Edward Wobber. Network

objects. Proceedings of the Fourteenth ACM Symposium on Operating Systems Principles,

in Operating Systems Review 27, 5 (December 1993), pages 217–230.

This paper describes a programming language for distributed applications based on

remote procedure calls, which hide most “distributedness” from the programmer.

4.1.3 Ann Wollrath, Roger Riggs, and Jim Waldo. A distributed object model for the

Java™ system. Computing Systems 9, 4 (1996), pages 265-290. Originally published

in Proceedings of the Second USENIX Conference on Object-Oriented Technologies

Saltzer & Kaashoek Ch. sr, p. 25 June 24, 2009 12:32 am

SR–26 Suggestions for Further Reading

Volume 2 (1996).
This paper presents a remote procedure call system for the Java programming
language. It provides a clear description of how an RPC system can be integrated
with an object-oriented programming language and the new exception types RPC
introduces.

4.2 Client/service systems

4.2.1 Daniel Swinehart, Gene McDaniel, and David [R.] Boggs. WFS: A simple
shared file system for a distributed environment. Proceedings of the Seventh ACM
Symposium on Operating Systems Principles, in Operating Systems Review 13, 5
(December 1979), pages 9–17.

This early version of a remote file system opens the door to the topic of distribution
of function across connected cooperating computers. The authors’ specific goal was
to keep things simple, thus, the relationship between mechanism and goal is much
clearer than in more modern, but more elaborate, systems.

4.2.2 Robert Scheifler and James Gettys. The X Window System. ACM Transactions
on Graphics 5, 2 (April 1986), pages 79–109.

The X Window System is the window system of choice on practically every
engineering workstation in the world. It provides a good example of using the
client/service model to achieve modularity. One of the main contributions of the X
Window System is that it remedied a defect that had crept into the UNIX system
when displays replaced typewriters: the display and keyboard were the only
hardware-dependent parts of the UNIX application programming interface. The X
Window System allowed display-oriented UNIX applications to be completely
independent of the underlying hardware. In addition, the X Window System
interposes an efficient network connection between the application and the display,
allowing configuration flexibility in a distributed system.

4.2.3 John H. Howard et al. Scale and performance in a distributed file system.
ACM Transactions on Computer Systems 6, 1 (February 1988), pages 51–81.

This paper describes experience with a prototype of the Andrew network file system
for a campus network and shows how the experience motivated changes in the
design. The Andrew file system had strong influence on version 4 of NFS.

4.3 Domain Name System (DNS)
The Domain Name System is one of the most interesting distributed systems in opera
tion. It is not only a building block in many distributed applications, but is itself an

Saltzer & Kaashoek Ch. sr, p. 26 June 24, 2009 12:32 am

Suggestions for Further Reading SR–27

interesting case study, offering many insights for anyone wanting to build a distributed
system or a naming system.

4.3.1 Paul V. Mockapetris and Kevin J. Dunlap. Development of the Domain Name
System, Proceedings of the SIGCOMM 1988 Symposium, pages 123–133. Also
published in ACM Computer Communications Review 18, 4 (August 1988), pages
123–133, and republished in ACM Computer Communications Review 25,1 (January
1995), pages 112–122.

4.3.2 Paul [V.] Mockapetris. Domain names—Concepts and facilities, Request for
Comments RFC 1034, Internet Engineering Task Force (November 1987).

4.3.3 Paul [V.] Mockapetris. Domain names—Implementation and specification,
Request for Comments RFC 1035, Internet Engineering Task Force (November 1987).

These three documents explain the DNS protocol.

4.3.4 	Paul Vixie. DNS Complexity. ACM Queue 5, 3 (April 2007), pages 24–29.
This paper uncovers many of the complexities of how DNS, described in the case
study in Section 4.4, works in practice. The protocol for DNS is simple and no
complete, precise specification of the system exists. The author argues that the
current descriptive specification of DNS is an advantage because it allows various
implementations to evolve to include new features as needed. The paper describes
many of these features and shows that DNS is one of the most interesting
distributed systems in use today.

5 Enforcing Modularity with Virtualization

5.1 Kernels
The readings on the UNIX system (see readings Section 2.2) are a good starting point for
studying kernels.

5.1.1 Per Brinch Hansen. The nucleus of a multiprogramming system.
Communications of the ACM 13, 4 (April 1970), pages 238–241.

The RC–4000 was the first, and may still be the best explained, system to use
messages as the primary thread coordination mechanism. It is also what would
today be called a microkernel design.

5.1.2 M. Frans Kaashoek et al. Application performance and flexibility on exokernel
systems. In Proceedings of the Sixteenth ACM Symposium on Operating Systems

Saltzer & Kaashoek Ch. sr, p. 27	 June 24, 2009 12:32 am

SR–28 Suggestions for Further Reading

Principles, in Operating Systems Review 31, 5 (December 1997), pages 52–65.
The exokernel provides an extreme version of separation of policy from mechanism,
sacrificing abstraction to expose (within protection constraints) all possible aspects
of the physical environment to the next higher layer, giving that higher layer
maximum flexibility in creating abstractions for its preferred programming
environment, or tailored to its preferred application.

5.2 Type extension as a modularity enforcement tool

5.2.1 Butler W. Lampson and Howard E. Sturgis. Reflections on an operating
system design. Communications of the ACM 19, 5 (May 1976), pages 251–265.

An operating system named CAL, designed at the University of California at
Berkeley, appears to be the first system to make explicit use of types in the interface
to the operating system. In addition to introducing this idea, Lampson and Sturgis
also give good insight into the pros and cons of various design decisions.
Documented late, the system was actually implemented in 1969.

5.2.2 Michael D. Schroeder, David D. Clark, and Jerome H. Saltzer. The Multics
kernel design project. Proceedings of the Sixth ACM Symposium on Operating Systems
Principles, in Operating Systems Review 11, 5 (November 1977), pages 43–56.

This paper addresses a wide range of issues encountered in applying type extension
(as well as microkernel thinking, though it wasn’t called that at the time) to Multics
in order to simplify its internal organization and reduce the size of its trusted base.
Many of these ideas were explored in even more depth in Philippe Janson’s Ph.D.
thesis, Using Type Extension to Organize Virtual Memory Mechanisms, M.I.T.
Department of Electrical Engineering and Computer Science, August 1976. That
thesis is also available as M.I.T. Laboratory for Computer Science Technical Report
TR–167, September 1976.

5.2.3 Galen C. Hunt and James R. Larus. Singularity: Rethinking the software stack.
Operating Systems Review 41, 2 (April 2007), pages 37–49.

Singularity is an operating system that uses type-safe languages to enforce
modularity between different software modules, instead of relying on virtual-
memory hardware. The kernel and all applications are written in a strongly-typed
programming language with automatic garbage collection. They run in a single
address space and are isolated from each other by the language runtime. They can
interact with each other only through communication channels that carry type-
checked messages.

Saltzer & Kaashoek Ch. sr, p. 28 June 24, 2009 12:32 am

Suggestions for Further Reading SR–29

5.3 Virtual Processors:Threads

5.3.1 Andrew D. Birrell. An introduction to programming with threads. Digital

Equipment Corporation Systems Research Center Technical Report #35, January

1989. 33 pages. (Also appears as Chapter 4 of Greg Nelson, editor, Systems

Programming with Modula–3, Prentice-Hall, 1991, pages 88–118.) A version for the

C# programming language appeared as Microsoft Research Report MSR-TR-2005

68.

This is an excellent tutorial, explaining the fundamental issues clearly and going on

to show the subtleties involved in exploiting threads correctly and effectively.

5.3.2 Thomas E. Anderson et al. Scheduler activations: Effective kernel support for

the user-level management of parallelism. ACM Transactions on Computer Systems 10,

1 (February 1992), pages 53–79. Originally published in Proceedings of the Thirteenth

ACM Symposium on Operating Systems Principles, in Operating Systems Review 25, 5

(December 1991), pages 95–109.

The distinction between user threads and kernel threads comes to the fore in this

paper, which offers a way of getting the advantages of both by having the right kind

of user/kernel thread interface. The paper also revisits the idea of a virtual processor,

but in a multiprocessor context.

5.3.3 David D. Clark. The structuring of systems using upcalls. Proceedings of the

Tenth ACM Symposium on Operating Systems Principles, in Operating Systems Review

19, 5 (December 1985), pages 171–180.

Attempts to impose modular structure by strict layering sometimes manage to

overlook the essence of what structure is most appropriate. This paper describes a

rather different intermodule organization that seems to be especially effective when

dealing with network implementations.

5.3.4 Jerome H. Saltzer. Traffic Control in a Multiplexed Computer System. Ph.D.

thesis, Massachusetts Institute of Technology, Department of Electrical Engineering,

June 1966. Also available as Project MAC Technical Report TR–30, 1966.

This work describes what is probably the first systematic virtual processor design

and thread package, the multiprocessor multiplexing scheme used in the Multics

system. Defines the coordination primitives BLOCK and WAKEUP, which are examples

of binary semaphores assigned one per thread.

5.3.5 Rob Pike et al. Processor sleep and wakeup on a shared-memory
multiprocessor. Proceedings of the EurOpen Conference (1991), pages 161–166.

This well-written paper does an excellent job of explaining how difficult it is to get

preemptive multiplexing, handling interrupts, and implementing coordination

Saltzer & Kaashoek Ch. sr, p. 29 June 24, 2009 12:32 am

SR–30 Suggestions for Further Reading

primitives correct on shared-memory multiprocessor.

5.4 Virtual Memory
There are few examples of papers that describe a simple, clean design. The older papers
(some can be found in reading Section 3.1) get bogged down in technology constraints;
the more recent papers (some of the them can be found in reading Section 6.1 on mul
tilevel memory management) often get bogged down in performance optimizations. The
case study on the evolution of enforcing modularity with the Intel x86 (see Section 5.7
of Chapter 5) describes virtual memory support in the most widely used processor and
shows how it evolved over time.

5.4.1 A[ndre] Bensoussan, C[harles] T. Clingen, and R[obert] C. Daley. The Multics
virtual memory: Concepts and design. Communications of the ACM 15, 5 (May
1972), pages 308–318.

This is a good description of a system that pioneered the use of high-powered
addressing architectures to support a sophisticated virtual memory system,
including memory-mapped files. The design was constrained and shaped by the
available hardware technology (0.3 MIPS processor with an 18-bit address space),
but the paper is a classic and easy to read.

5.5 Coordination
Every modern textbook covers the topic of coordination, but typically brushes past the
subtleties and also typically gives the various mechanisms more emphasis than they
deserve. These readings either explain the issues much more carefully or extend the basic
concepts in various directions.

5.5.1 E[dsger] W. Dijkstra. Co-operating sequential processes. In F. Genuys, editor,
Programming Languages, NATO Advanced Study Institute, Villard-de-Lans, 1966.
Academic Press, 1968, pages 43–112.

This paper introduces semaphores, the synchronizing primitive most often used in
academic exercises, and is notable for its careful, step-by-step development of the
requirements for mutual exclusion and its implementation. Many modern
treatments ignore the subtleties discussed here as if they were obvious. They aren’t,
and if you want to understand synchronization you should read this paper.

5.5.2 E[dsger] W. Dijkstra. Solution of a problem in concurrent programming
control. Communications of the ACM 8, 9 (September 1965), page 569.

In this brief paper, Dijkstra first reports Dekker’s observation that multiprocessor
locks can be implemented entirely in software, relying on the hardware to guarantee
only that read and write operations have before-or-after atomicity.

Saltzer & Kaashoek Ch. sr, p. 30 June 24, 2009 12:32 am

Suggestions for Further Reading SR–31

5.5.3 Leslie Lamport. A fast mutual exclusion algorithm. ACM Transactions on
Computer Systems 5, 1 (February 1987), pages 1–11

This paper presents a fast version of a software-only implementation of locks and
gives an argument as to why this version is optimal.

5.5.4 David P. Reed and Rajendra K. Kanodia. Synchronization with eventcounts
and sequencers. Communications of the ACM 22, 2 (February 1979), pages 115–123.

This paper introduces an extremely simple coordination system that uses less
powerful primitives for sequencing than for mutual exclusion; a consequence is
simple correctness arguments.

5.5.5 Butler W. Lampson and David D. Redell. Experience with processes and
monitors in Mesa. Communications of the ACM 23, 2 (February 1980), pages
105–117.

This is a nice discussion of the pitfalls involved in integrating concurrent activity
coordination into a programming language.

5.5.6 Stefan Savage et al. Eraser: A dynamic data race detector for multi-threaded
programs. ACM Transactions on Computer Systems 15, 4 (November 1997), pages
391-411. Also in the Proceedings of the Sixteenth ACM Symposium on Operating
Systems Principles (October 1997).

This paper describes an interesting strategy for locating certain classes of locking
mistakes: instrument the program by patching its binary data references; then
watch those data references to see if the program violates the locking protocol.

5.5.7 Paul E. McKenney et al. Read-copy update. Proceedings of the Ottawa Linux
Symposium, 2002, pages 338–367.

This paper observes that locks can be an expensive mechanism for before-or-after
atomicity for data structures that are mostly read and infrequently modified. The
authors propose a new technique, read-copy update (RCU), which improves
performance and scalability. The Linux kernel uses this mechanism for many of its
data structures that processors mostly read.

5.5.8 Maurice Herlihy. Wait-free synchronization. ACM Transactions on
Programming Languages and Systems 11, 1 (January 1991), pages 124–149.

This paper introduces the goal of wait-free synchronization, now often called non-
blocking coordination, and gives non-blocking, concurrent implementations of
common data structures such as sets, lists, and queues.

5.5.9 Timothy L. Harris. A pragmatic implementation of non-blocking linked lists.
Proceedings of the fifteenth International Symposium on Distributed Computing

Saltzer & Kaashoek Ch. sr, p. 31 June 24, 2009 12:32 am

SR–32 Suggestions for Further Reading

(October 2001), pages 300-314.
This paper describes a practical implementation of a linked list in which threads can
insert concurrently without blocking.

See also reading 5.1.1, by Brinch Hansen, which uses messages as a coordination tech
nique, and reading 5.3.1, by Birrell, which describes a complete set of coordination
primitives for programming with threads.

5.6 Virtualization

5.6.1 Robert J. Creasy. The origin of the VM/370 time-sharing system. IBM Journal
of Research and Development 25, 5 (1981), pages 483–490.

This paper is an insightful retrospective about a mid-1960s project to virtualize the
IBM 360 computer architecture and the development that led to VM/370, which
in the 1970s became a popular virtual machine system. At the time, the unusual
feature of VM/370 was its creation of a strict, by-the-book, hardware virtual
machine, thus providing the ability to run any system/370 program in a controlled
environment. Because it was a pioneer project, the author explained things
particularly well, thus providing a good introduction to the concepts and problems
in implementing virtual machines.

5.6.2 Edouard Bugnion et al. Disco: running commodity operating systems on
scalable multiprocessors. ACM Transactions on Computer Systems 15, 14 (November
1997), pages 412–447.

This paper brought virtual machines back as a mainstream way of building systems.

5.6.3 Carl Waldspurger. Memory resource management in VMware ESX server.
Proceedings of the Fifth USENIX Symposium on Operating Systems Design and
Implementation (December 2002), pages 181–194.

This well-written paper introduces a nice trick (a balloon driver) to decide how
much physical memory to give to guest operating systems.

5.6.4 Keith Adams and Ole Agesen. A comparison of software and hardware
techniques for x86 virtualization. Proceedings of the Twelfth Symposium on
Architectural Support for Programming Languages and Operating Systems (October
2006). Also in Operating Systems Review 40, 5 (December 2006), pages 2–13.

This paper describes how one can virtualize the Intel x86 instruction set to build a
high-performance virtual machine. It compares two implementation strategies: one
that uses software techniques such as binary rewriting to virtualize the instruction
set, and one that uses recent hardware additions to the x86 processor to make
virtualizing easier. The comparison provides insights about implementing modern

Saltzer & Kaashoek Ch. sr, p. 32 June 24, 2009 12:32 am

Suggestions for Further Reading SR–33

virtual machines and operating system support in modern x86 processors.

Also see the paper on the secure virtual machine monitor for the VAX machine, reading
11.3.5.

6 Performance

6.1 Multilevel memory management
An excellent discussion of memory hierarchies, with special attention paid to the design
space for caches, can be found in Chapter 5 of the book by Patterson and Hennessy,
reading 1.1.1. A lighter-weight treatment focused more on virtual memory, and includ
ing a discussion of stack algorithms, can be found in Chapter 3 of Tanenbaum's
computer systems book, reading 1.2.1.

6.1.1 R[obert] A. Frieburghouse. Register allocation via usage counts.
Communications of the ACM 17, 11 (November 1974), pages 638–642.

This paper shows that compiler code generators must do multilevel memory

management and that they have the same problems as do caches and paging

systems.

6.1.2 R[ichard] L. Mattson, J. Gecsei, D[onald] R. Slutz, and I[rving] L. Traiger.

Evaluation techniques for storage hierarchies. IBM Systems Journal 9, 2 (1970), pages

78–117.

The original reference on stack algorithms and their analysis, this paper is well

written and presents considerably more in-depth observations than the brief

summaries that appear in modern textbooks.

6.1.3 Richard Rashid et al. Machine-independent virtual memory management for

paged uniprocessor and multiprocessor architectures. IEEE Transactions on Computers

37, 8 (August 1988), pages 896–908. Originally published in Proceedings of the

Second International Conference on Architectural Support for Programming Languages

and Operating Systems (November 1987), pages 31–39.

This paper describes a design for a sophisticated virtual memory system that has

been adopted by several operating systems, including several BSD operating

systems and Apple’s OS X. The system supports large, sparse virtual address spaces,

copy-on-write copying of pages, and memory-mapped files.

6.1.4 Ted Kaehler and Glenn Krasner. LOOM: Large object-oriented memory for

Smalltalk–80 systems. In Glenn Krasner, editor, Smalltalk–80: Bits of History, Words

Saltzer & Kaashoek Ch. sr, p. 33 June 24, 2009 12:32 am

SR–34 Suggestions for Further Reading

of Advice. Addison-Wesley, 1983, pages 251–271. ISBN: 0–201–11669–3.
This paper describes the memory-management system used in Smalltalk, an
interactive programming system for desktop computers. A coherent virtual
memory language support system provides for lots of small objects while taking into
account address space allocation, multilevel memory management, and naming in
an integrated way.

The paper on the Woodstock File System, by Swinehart et al., reading 4.2.1, describes a
file system that is organized as a multilevel memory management system. Also see read
ing 10.1.8 for an interesting application (shared virtual memory) using multilevel
memory management.

6.2 Remote procedure call

6.2.1 Michael D. Schroeder and Michael Burrows. Performance of Firefly RPC.
ACM Transactions on Computer Systems 8, 1 (February 1990), pages 1–17. Originally
published in Proceedings of the Twelfth ACM Symposium on Operating Systems
Principles, in Operating Systems Review 23, 5 (December 1989), pages 102–113.

As a complement to the abstract discussion of remote procedure call in reading
4.1.1, this paper gives a concrete, blow-by-blow accounting of the steps required in
a particular implementation and then compares this accounting with overall time
measurements. In addition to providing insight into the intrinsic costs of remote
procedures, this work demonstrates that it is possible to do bottom-up performance
analysis that correlates well with top-down measurements.

6.2.2 Brian N. Bershad, Thomas E. Anderson, Edward D. Lazowska, and Henry M.
Levy. Lightweight remote procedure call. ACM Transactions on Computer Systems 8, 1
(February 1990), pages 37–55. Originally published in Proceedings of the Twelfth
ACM Symposium on Operating Systems Principles, in Operating Systems Review 23, 5
(December 1989), pages 102–113.

6.2.3 Jochen Liedtke. Improving IPC by kernel design. Proceedings of the Fourteenth
ACM Symposium on Operating Systems Principles, in Operating Systems Review 27, 5
(December 1993), pages 175–187.

These two papers develop techniques to allow local kernel-based client/service
modularity to look just like remote client/service modularity to the application
designer, while at the same time capturing the performance advantage that can
come from being local.

Saltzer & Kaashoek Ch. sr, p. 34 June 24, 2009 12:32 am

Suggestions for Further Reading

6.3 Storage

6.3.1 Chris Ruemmler and John Wilkes. An introduction to disk drive modeling.
Computer 27, 3 (March 1994), pages 17–28.

This paper is really two papers in one. The first five pages provide a wonderfully
accessible explanation of how disk drives and controllers actually work. The rest of
the paper, of interest primarily to performance modeling specialists, explores the
problem of accurately simulating a complex disk drive, with measurement data to
show the size of errors that arise from various modeling simplifications (or
oversimplifications).

6.3.2 Marshall K. McKusick, William N. Joy, Samuel J. Leffler, and Robert S. Fabry.
A fast file system for UNIX. ACM Transactions on Computer Systems 2, 3 (August
1984), pages 181–197.

The “fast file system” nicely demonstrates the trade-offs between performance and
complexity in adding several well-known performance enhancement techniques,
such as multiple block sizes and sector allocation based on adjacency, to a file system
that was originally designed as the epitome of simplicity.

6.3.3 Gregory R. Ganger and Yale N. Patt. Metadata update performance in file
systems. Proceedings of the First USENIX Symposium on Operating Systems Design and
Implementation (November 1994), pages 49–60.

This paper is an application to file systems of some recovery and consistency
concepts originally developed for database systems. It describes a few simple rules
(e.g., an inode should be written to the disk after writing the disk blocks to which
it points) that allow a system designer to implement a file system that is high
performance and always keeps its on-disk data structures consistent in the presence
of failures. As applications perform file operations, the rules create dependencies
between data blocks in the write-behind cache. A disk driver that knows about these
dependencies can write the cached blocks to disk in an order that maintains
consistency of on-disk data structures despite system crashes.

6.3.4 Andrew Birrell et al. A design for high-performance flash disks. ACM
Operating Systems Review 41, 2 (April 2007), pages 88–93. (Also appeared as
Microsoft Corporation technical report TR-2005-176.)

Flash (non-volatile) electronic memory organized to appear as a disk has emerged
as a more expensive but very low-latency alternative to magnetic disks for durable
storage. This short paper describes, in an easy-to-understand way, the challenges
associated with building a high-performance file system using flash disks and
proposes a design to address the challenges. This paper is a good start for readers
who want to explore flash-based storage systems.

SR–35

Saltzer & Kaashoek Ch. sr, p. 35 June 24, 2009 12:32 am

SR–36 Suggestions for Further Reading

6.4 Other performance-related topics

6.4.1 Sharon E. Perl and Richard L. Sites. Studies of Windows NT performance
using dynamic execution traces, Proceedings of the Second USENIX Symposium on
Operating Systems Design and Implementation (October 1996). Also in Operating
System Review 30, SI (October 1996), pages 169–184.

This paper shows by example that any performance issue in computer systems can
be explained. The authors created a tool to collect complete traces of instructions
executed by the Windows NT operating system and applications. The authors
conclude that pin bandwidth limits the achievable execution speed of applications
and that locks inside the operating system can limit applications to scale to more
than a moderate number of processors. The paper also discusses the impact of
cache-coherence hardware (see Chapter 10[on-line]) on application performance.
All of these issues are increasingly important for multiprocessors on a single chip.

6.4.2 Jeffrey C. Mogul and K.K. Ramakrishnan. Eliminating receive livelock in an
interrupt-driven kernel. Transactions on Computer Systems 15, 3 (August 1997), pages
217–252.

This paper introduces the problem of receive livelock (described in Sidebar 6.7) and
presents a solution. Receive livelock is a possible undesirable situation when a
system is temporarily overloaded. It can arise if the server spends too much of its
time saying “I'm too busy” and as a result has not time left to serve any of the
requests.

6.4.3 Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified data processing
on large clusters. Proceedings of the Sixth USENIX Symposium on Operating Systems
Design and Implementation (December 2004), pages 137–150. Also in
Communications of the ACM 51, 1 (January 2008), pages 107-113.

This paper is a case study of aggregating arrays (reaching into the thousands) of
computers to perform parallel computations on large data sets (e.g., all the pages of
the Web). It uses a model that applies when a composition of two serial functions
(Map and Reduce) has no side-effects on the data sets. The charm of MapReduce
is that for computations that fit the model, the runtime uses concurrency but hides
it completely from the programmer. The runtime partitions the input data set,
executes the functions in parallel on different parts of the data set, and handles the
failures of individual computers.

Saltzer & Kaashoek Ch. sr, p. 36 June 24, 2009 12:32 am

Suggestions for Further Reading SR–37

7 The Network as a System and as a System Component
Proceedings of the IEEE 66, 11 (November 1978), a special issue of that journal devoted
to packet switching, contains several papers mentioned under various topics here. Col
lectively, they provide an extensive early bibliography on computer communications.

7.1 Networks
The book by Perlman on bridges and routers, reading 1.2.5, explains how the network
layer really works.

7.1.1 David D. Clark, Kenneth T. Pogran, and David P. Reed. An introduction to

local area networks. Proceedings of the IEEE 66, 11 (November 1978), pages

1497–1517.

This basic tutorial on local area network communications characterizes the various

modular components of a local area network, both interface and protocols, gives

specific examples, and explains how local area networks relate to larger,

interconnected networks. The specific examples are now out of date, but the rest of

the material is timeless.

7.1.2 Robert M. Metcalfe and David R. Boggs. Ethernet: Distributed packet

switching for local computer networks. Communications of the ACM 19, 7 (July

1976), pages 395–404.

This paper provides the design of what has proven to be the most popular local area

network technology.

7.2 Protocols

7.2.1 Louis Pouzin and Hubert Zimmerman. A tutorial on protocols. Proceedings of
the IEEE 66, 11 (November 1978), pages 1346–1370.

This paper is well written and provides perspective along with the details. The fact

that it was written a long time ago turns out to be its major appeal. Because

networks were not widely understood at the time, it was necessary to fully explain

all of the assumptions and offer extensive analogies. This paper does an excellent job

of both, and as a consequence it provides a useful complement to modern texts.

While reading this paper, anyone who is familiar with current network technology

will frequently exclaim, “So that’s why the Internet works that way,” while reading

this paper.

7.2.2 Vinton G. Cerf and Peter T. Kirstein. Issues in packet-network

Saltzer & Kaashoek Ch. sr, p. 37 June 24, 2009 12:32 am

SR–38 Suggestions for Further Reading

interconnection. Proceedings of the IEEE 66, 11 (November 1978), pages 1386–1408.
At the time this paper was written, an emerging problem was the interconnection
of independently administered data communication networks. This paper explores
the issues in both breadth and depth, a combination that more recent papers do not
provide.

7.2.3 David D. Clark and David L. Tennenhouse. Architectural considerations for a
new generation of protocols. ACM SIGCOMM ’91 Conference: Communications
Architectures and Protocols, in Computer Communication Review 20, 4 (September
1990), pages 200–208.

This paper captures 20 years of experience in protocol design and implementation
and lays out the requirements for the next few rounds of protocol design. The basic
observation is that the performance requirements of future high-speed networks
and applications will require that the layers used for protocol description not
constrain implementations to be similarly layered. This paper is required reading
for anyone who is developing a new protocol or protocol suite.

7.2.4 Danny Cohen. On holy wars and a plea for peace. IEEE Computer 14, 10
(October 1981), pages 48–54.

This is an entertaining discussion of big-endian and little-endian arguments in
protocol design.

7.2.5 Danny Cohen. Flow control for real-time communication. Computer
Communication Review 10, 1–2 (January/April 1980), pages 41–47.

This brief item is the source of the “servant’s dilemma”, a parable that provides
helpful insight into why flow control decisions must involve the application.

7.2.6 Geoff Huston. Anatomy: A look inside network address translators. The
Internet Protocol Journal 7, 3 (September 2004), pages 2–32.

Network address translators (NATs) break down the universal connectivity
property of the Internet: when NATs are in use one, can no longer assume that every
computer in the Internet can communicate with every other computer in the
Internet. This paper discusses the motivation for NATs, how they work, and in
what ways they create havoc for some Internet applications.

7.2.7 Van Jacobson. Congestion avoidance and control. Proceedings of the Symposium
on Communications Architectures and Protocols (SIGCOMM '88), pages 314–329.
Also in Computer Communication Review 18, 4 (August 1988).

Sidebar 7.9 gives a simplified description of the congestion avoidance and control
mechanism of TCP, the most commonly used transport protocol in the Internet.
This paper explains those mechanisms in full detail. They are surprisingly simple

Saltzer & Kaashoek Ch. sr, p. 38 June 24, 2009 12:32 am

Suggestions for Further Reading SR–39

but have proven to be effective.

7.2.8 Jordan Ritter. Why Gnutella can’t scale. No, really. Unpublished grey
literature. <http://www.darkridge.com/~jpr5/doc/gnutella.html>.

This paper offers a simple performance model to explain why the Gnutella protocol

(see problem set 20) cannot support large networks of Gnutella peers. The problem

is incommensurate scaling of its bandwidth requirements.

7.2.9 David B. Johnson. Scalable support for transparent mobile host
internetworking. Wireless Networks 1, 3 (1995), pages 311–321.

Addressing a laptop computer that is connected to a network by a radio link and

that can move from place to place without disrupting network connections can be

a challenge. This paper proposes a systematic approach based on maintaining a

tunnel between the laptop computer’s current location and an agent located at its

usual home location. Variations of this paper (based on the author’s 1993 Ph.D.

thesis at Carnegie-Mellon University and available as CMU Computer Science

Technical Report CS–93–128) have appeared in several 1993 and 1994 workshops

and conferences, as well as in the book Mobile Computing, Tomasz Imielinski and

Henry F. Korth, editors, Kluwer Academic Publishers, c. 1996. ISBN:

079239697–9.

One popular protocol, remote procedure call, is covered in depth in reading 4.1.1 by Bir
rell and Nelson, as well as Section 10.3 of Tanenbaum’s Modern Operating Systems,
reading 1.2.1.

7.3 Organization for communication

7.3.1 Leonard Kleinrock. Principles and lessons in packet communications.

Proceedings of the IEEE 66, 11 (November 1978), pages 1320–1329.

7.3.2 Lawrence G. Roberts. The evolution of packet switching. Proceedings of the
IEEE 66, 11 (November 1978), pages 1307–1313.

These two papers discuss experience with the ARPANET. Anyone faced with the

need to design a network should look over these two papers, which focus on lessons

learned and the sources of surprise.

7.3.3 J[erome] H. Saltzer, D[avid]. P. Reed, and D[avid]. D. Clark. End-to-end

arguments in system design. ACM Transactions on Computer Systems 2, 4 (November

1984), pages 277–288. An earlier version appears in the Proceedings of the Second

International Conference on Distributed Computing Systems (April 1981), pages

Saltzer & Kaashoek Ch. sr, p. 39 June 24, 2009 12:32 am

<http://www.darkridge.com/~jpr5/doc/gnutella.html>

SR–40 Suggestions for Further Reading

504–512.
This paper proposes a design rationale for deciding which functions belong in
which layers of a layered network implementation. It is one of the few papers
available that provides a system design principle.

7.3.4 Leonard Kleinrock. The latency/bandwidth trade-off in gigabit networks.
IEEE Communications Magazine 30, 4 (April 1992), pages 36–40.

Technology has made gigabit/second data rates economically feasible over long
distances. But long distances and high data rates conspire to change some
fundamental properties of a packet network—latency becomes the dominant factor
that limits applications. This paper provides a good explanation of the problem.

7.4 Practical aspects
For the complete word on the Internet protocols, check out the following series of books.

7.4.1 W. Richard Stevens. TCP/IP Illustrated. Addison-Wesley; v. 1, 1994, ISBN
0–201–63346–9, 576 pages; v. 2 (with co-author Gary R. Wright) 1995, ISBN
0–201–63354–x, 1174 pages.; v. 3, 1996, ISBN 0–201–63495–3, 328 pages. Volume
1: The Protocols. Volume 2: The Implementation. Volume 3: TCP for Transactions,
HTTP, NNTP, and the UNIX® Domain Protocols.

These three volumes will tell you more than you wanted to know about how
TCP/IP is implemented, using the network implementation of the Berkeley System
Distribution for reference. The word “illustrated” refers more to computer
printouts—listings of packet traces and programs—than to diagrams. If you want
to know how some aspect of the Internet protocol suite is actually implemented,
this is the place to look—though it does not often explain why particular
implementation choices were made.

8 Fault Tolerance: Reliable Systems from Unreliable Components
A plan for some degree of fault tolerance shows up in many systems. For an example of
fault tolerance in distributed file systems, see the paper on Coda by Kistler and Satya
narayanan, reading 10.1.2. See also the paper on RAID by Katz et al., s.

8.1 Fault Tolerance
Chapter 3 of the book by Gray and Reuter, reading 1.1.5, provides a bedrock text on this
subject.

8.1.1 Jim [N.] Gray and Daniel P. Siewiorek. High-availability computer systems.

Saltzer & Kaashoek Ch. sr, p. 40 June 24, 2009 12:32 am

Suggestions for Further Reading SR–41

Computer 24, 9 (September 1991), pages 39–48.

This is a nice, easy-to-read overview of how high availability can be achieved.

8.1.2 Daniel P. Siewiorek. Architecture of fault-tolerant computers. Computer 17, 8
(August 1984), pages 9–18.

This paper provides an excellent taxonomy, as well as a good overview of several

architectural approaches to designing computers that continue running even when

a single hardware component fails.

8.2 Software errors

8.2.1 Dawson Engler et al. Bugs as deviant behavior: A general approach to inferring

errors in systems code. Proceedings of the Eighteenth ACM Symposium on Operating

Systems Principles, 2001, in Operating Systems Review 35, 5 (December 2001), pages

57–72.

This paper describes a method for finding possible programming faults in large

systems by looking for inconsistencies. For example, if in most cases an invocation

of a certain function is preceded by disabling interrupts but in a few cases it is not,

there is a good chance that a programming fault is present. The paper uses this

insight to create a tool for finding potential faults in large systems.

8.2.2 Michael M. Swift et al. Recovering device drivers. Proceedings of the Sixth

Symposium on Operating System Design and Implementation (December 2004), pages

1–16.

This paper observes that software faults in device drivers often lead to fatal errors

that cause operating systems to fail and thus require a reboot. It then describes how

virtual memory techniques can be used to enforce modularity between device

drivers and the rest of the operating system kernel, and how the operating system

can recover device drivers when they fail, reducing the number of reboots.

8.3 Disk failures

8.3.1 Bianca Schroeder and Garth A. Gibson. Disk failures in the real world: What

does an MTTF of 1,000,000 hours mean to you? Proceedings of the fifth USENIX

Conference on File and Storage Technologies (2007), pages 1–16.

As explained in Section 8.2, it is not uncommon that data sheets for disk drives

specify MTTFs of one hundred years or more, many times the actual observed

lifetimes of those drives in the field. This paper looks at disk replacement data for

100,000 disk drives and discusses what MTTF means for those disk drives.

Saltzer & Kaashoek Ch. sr, p. 41 June 24, 2009 12:32 am

SR–42 Suggestions for Further Reading

8.3.2 Eduardo Pinheiro, Wolf-Dietrich Weber, and Luiz Andre Barroso. Failure
trends in a large disk drive population. Proceedings of the fifth USENIX Conference on
File and Storage Technologies (2007), pages 17–28.

Recently, outfits such as Google have deployed large enough numbers of off-the
shelf disk drives for a long enough time that they can make their own evaluations
of disk drive failure rates and lifetimes, for comparison with the a priori reliability
models of the disk vendors. This paper reports data collected from such
observations. It analyzes the correlation between failures and several parameters that
are generally believed to impact the lifetime of disk and finds some surprises. For
example, it reports that temperature is less correlated with disk drive failure than
was previously reported, as long as the temperature is within a certain range and
stable.

9 Atomicity: All-or-Nothing and Before-or-After

9.1 Atomicity, Coordination, and Recovery
The best source on this topic is reading 1.1.5, but Gray and Reuter’s thousand-page book
can be a bit overwhelming.

9.1.1 Warren A. Montgomery. Robust Concurrency Control for a Distributed
Information System. Ph.D. thesis, Massachusetts Institute of Technology, Department
of Electrical Engineering and Computer Science, December 1978. Also available as
M.I.T. Laboratory for Computer Science Technical Report TR–207, January 1979.
197 pages.

This work describes alternative strategies that maximize concurrent activity while
achieving atomicity: maintaining multiple values for some variables, atomic
broadcast of messages to achieve proper sequence.

9.1.2 D. B. Lomet. Process structuring, synchronization, and recovery using atomic
actions. Proceedings of an ACM Conference on Language Design for Reliable Software
(March 1977), pages 128–137. Published as ACM SIGPLAN Notices 12, 3 (March
1977); Operating Systems Review 11, 2 (April 1977); and Software Engineering Notes
2, 2 (March 1977).

This is one of the first attempts to link atomicity to both recovery and coordination.
It is written from a language, rather than an implementation, perspective.

9.2 Databases

9.2.1 Jim [N.] Gray et al. The recovery manager of the System R database manager.

Saltzer & Kaashoek Ch. sr, p. 42 June 24, 2009 12:32 am

Suggestions for Further Reading SR–43

ACM Computing Surveys 13, 2 (June 1981), pages 223–242.
This paper is a case study of a sophisticated, real, high-performance logging and
locking system. It is one of the most interesting case studies of its type because it
shows the number of different, interacting mechanisms needed to construct a
system that performs well.

9.2.2 C. Mohan et al. ARIES: A transaction recovery method supporting fine-
granularity locking and partial rollbacks using write-ahead logging. ACM Transactions
on Database Systems 17, 1 (1992), pages 94-162.

This paper describes all the intricate design details of a fully featured, commercial-
quality database transaction system that uses write-ahead logging.

9.2.3 C. Mohan, Bruce Lindsey, and Ron Obermarck. Transaction management in
the R* distributed database management system. ACM Transactions on Database
Systems (TODS) 11, 4 (December 1986), pages 378–396.

This paper deals with transaction management for distributed databases, and
introduces two new protocols (Presumed Abort and Presumed Commit) that
optimize two-phase commit (see Section 9.6), resulting in fewer messages and log
writes. Presumed Abort is optimized for transactions that perform only read
operations, and Presumed Commit is optimized for transactions with updates that
involve several distributed databases.

9.2.4 Tom Barclay, Jim Gray, and Don Slutz. Microsoft TerraServer: A spatial data
warehouse. Microsoft Technical Report MS-TR-99-29. June 1999.

The authors report on building a popular Web site that hosts aerial, satellite, and
topographic images of Earth using off-the-shelf components, including a standard
database system for storing the terabytes of data.

9.2.5 Ben Vandiver et al. Tolerating byzantine faults in transaction processing
systems using commit barrier scheduling. Proceedings of the Twenty-first ACM
Symposium on Operating Systems Principles, in Operating Systems Review 41, 6
(December 2005), pages 59–79.

This paper describes a replication scheme for handling Byzantine faults in database
systems. It issues queries and updates to multiple replicas of unmodified, off-the
shelf database systems, and it compares their responses, thus creating a single
database that is Byzantine fault tolerant (see Section 8.6 for the definition of
Byzantine).

Saltzer & Kaashoek Ch. sr, p. 43 June 24, 2009 12:32 am

SR–44 Suggestions for Further Reading

9.3 Atomicity-related topics

9.3.1 Mendel Rosenblum and John K. Ousterhout. The design and implementation
of a log-structured file system. ACM Transactions on Computer Systems 10, 1 (February
1992), pages 26–52. Originally published in Proceedings of the Thirteenth ACM
Symposium on Operating Systems Principles, in Operating Systems Review 25, 5
(December 1991), pages 1–15.

Although it has long been suggested that one could in principle store the contents
of a file system on disk in the form of a finite log, this design is one of the few that
demonstrates the full implications of that design strategy. The paper also presents a
fine example of how to approach a system problem by carefully defining the
objective, measuring previous systems to obtain a benchmark, and then comparing
performance as well as functional aspects that cannot be measured.

9.3.2 H. T. Kung and John T. Robinson. On optimistic methods for concurrency
control. ACM Transactions on Database Systems 9, 4 (June 1981), pages 213–226.

This early paper introduced the idea of using optimistic approaches to controlling
updates to shared data. An optimistic scheme is one in which a transaction proceeds
in the hope that its updates are not conflicting with concurrent updates of another
transaction. At commit time, the transaction checks to see if the hope was justified.
If so, the transaction commits. If not, the transaction aborts and tries again.
Applications that use a database in which contention for particular records is
infrequent may run more efficiently with this optimistic scheme than with a scheme
that always acquires locks to coordinate updates.

See also the paper by Lampson and Sturgis, reading 1.8.7 and the paper by Ganger and
Patt, reading 6.3.3.

10 Consistency and Durable Storage

10.1 Consistency

10.1.1 J. R. Goodman. Using cache memory to reduce processor-memory traffic.
Proceedings of the 10th Annual International Symposium on Computer Architecture,
pages 124–132 (1983).

The paper that introduced a protocol for cache-coherent shared memory using
snoopy caches. The paper also sparked much research in more scalable designs for
cache-coherent shared memory.

10.1.2 James J. Kistler and M[ahadarev] Satyanarayanan. Disconnected operation in

Saltzer & Kaashoek Ch. sr, p. 44 June 24, 2009 12:32 am

Suggestions for Further Reading SR–45

the Coda file system. Proceedings of the Thirteenth ACM Symposium on Operating
Systems Principles, in Operating Systems Review 25, 5 (December 1991), pages
213–225.

Coda is a variation of the Andrew File System (AFS) that provides extra fault
tolerance features. It is notable for using the same underlying mechanism to deal
both with accidental disconnection due to network partition and the intentional
disconnection associated with portable computers. This paper is well written.

10.1.3 Jim Gray et al. The dangers of replication and a solution. Proceedings of the
1996 ACM SIGMOD International Conference on Management of Data, in ACM
SIGMOD Record 25, 2 (June 1996), pages 173–182.

This paper describes the challenges for replication protocols in situations where the
replicas are stored on mobile computers that are frequently disconnected. The paper
argues that trying to provide transactional semantics for an optimistic replication
protocol in this setting is unstable because there will be too many reconciliation
conflicts. It proposes a new two-tier protocol for reconciling disconnected replicas
that addresses this problem.

10.1.4 Leslie Lamport. Paxos made simple. Distributed computing (column), ACM
SIGACT News 32, 4 (Whole Number 121, December 2001), pages 51–58.

This paper describes an intricate protocol, Paxos, in a simple way. The Paxos
protocol allows several computers to agree on a value (e.g., the list of available
computers in a replicated service) in the face of network and computer failures. It
is an important building block in building fault tolerant services.

10.1.5 Fred Schneider. Implementing fault-tolerant services using the state machine
approach: A tutorial. ACM Computing Surveys 22, 4 (1990), pages 299–319.

This paper provides a clear description of one of the most popular approaches for
building fault tolerant services, the replicated-state machine approach.

10.1.6 Leslie Lamport. Time, clocks, and the ordering of events in a distributed
system. Communications of the ACM 21, 7 (1978), pages 558–565.

This paper introduces an idea that is now known as Lamport clocks. A Lamport
clock provides a global, logical clock for a distributed system that respects the
physical clocks of the computers comprising the distributed system and the
communication between them. The paper also introduces the idea of replicated
state machines.

10.1.7 David K. Gifford. Weighted voting for replicated data. Proceedings of the
Seventh ACM Symposium on Operating Systems Principles, in Operating Systems Review
13, 5 (December 1979), pages 150–162. Also available as Xerox Palo Alto Research

Saltzer & Kaashoek Ch. sr, p. 45 June 24, 2009 12:32 am

SR–46 Suggestions for Further Reading

Center Technical Report CSL–79–14 (September 1979).
The work discusses a replicated data algorithm that allows the trade-off between
reliability and performance to be adjusted by assigning weights to each data copy
and requiring transactions to collect a quorum of those weights before reading or
writing.

10.1.8 Kai Li and Paul Hudak. Memory coherence in shared virtual memory
systems ACM Transactions on Computer System 7, 4 (November 1989), pages
321–359.

This paper describes a method to create a shared virtual memory across several
separated computers that can communicate only with messages. It uses hardware
support for virtual memory to cause the results of a write to a page to be observed
by readers of that page on other computers. The goal is to allow programmers to
write parallel applications on a distributed computer system in shared-memory
style instead of a message-passing style.

10.1.9 Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The Google file
system. Proceedings of the Nineteenth ACM Symposium on Operating Systems Principles
(October 2003), pages 29–43. Also in Operating Systems Review 37, 5 (December
2003).

This paper introduces a file system used in many of Google’s applications. It
aggregates the disks of thousands of computers in a cluster into a single storage
system with a simple file system interface. Its design is optimized for large files and
replicates files for fault tolerance. The Google File System is used in the storage
back-end of many of Google’s applications, including search.

10.1.10 F[ay] Chang et al. Bigtable: A distributed storage system for structured data.
ACM Transactions on Computer Systems 26, 2, article 4 (2008), pages 1–26.

This paper describes a database-like system for storing petabytes of structured data
on thousands of commodity servers.

10.2 Durable storage

10.2.1 Raymond A. Lorie. The long-term preservation of digital information.
Proceedings of the first ACM/IEEE Joint Conference on Digital Libraries (2001), pages
346–352.

This is a thoughtful discussion of the problems of archiving digital information
despite medium and technology obsolescence.

10.2.2 Randy H. Katz, Garth A. Gibson, and David A. Patterson. Disk system

Saltzer & Kaashoek Ch. sr, p. 46 June 24, 2009 12:32 am

Suggestions for Further Reading SR–47

architectures for high performance computing. Proceedings of the IEEE 77, 12
(December 1989), pages 1842–1857.

The first part of this reference paper on Redundant Arrays of Independent Disks
(RAID) reviews disk technology; the important material is the catalog of six
varieties of RAID organization.

10.2.3 Petros Maniatis et al. LOCKSS: A peer-to-peer digital preservation system.
ACM Transactions on Computer Systems 23, 1 (February 2005), pages 2–50.

This paper describes a peer-to-peer system for preserving access to journals and
other archival information published on the Web. Its design is based on the mantra
“lots of copies keep stuff safe” (LOCKSS). A large number of persistent Web caches
keep copies and cooperate to detect and repair damage to their copies using a new
voting scheme.

10.2.4 A[lan J.] Demers et al. Epidemic algorithms for replicated database
maintenance. Proceedings of the Sixth Symposium on Principles of Distributed
Computing (August 1987), pages 1-12. Also in Operating Systems Review 22, 1
(January 1988), pages 8-32.

This paper describes an epidemic protocol to update data that is replicated on many
machines. The essence of an epidemic protocol is that each computer periodically
gossips with some other, randomly chosen computer and exchanges information;
multiple computers thus learn about all updates in a viral fashion. Epidemic
protocols can be simple and robust, yet can spread updates relatively quickly.

10.3 Reconciliation

10.3.1 Douglas B. Terry et al. Managing update conflicts in Bayou, a weakly
connected replicated storage system. Proceedings of the Fifteenth Symposium on
Operating Systems Principles (December 1995), in Operating Systems Review 29, 5
(December 1995), pages 172–183.

This paper introduces a replication scheme for computers that share data but are
not always connected. For example, each computer may have a copy of a calendar,
which it can update optimistically. Bayou will propagate these updates, detect
conflicts, and attempt to resolve conflicts, if possible.

10.3.2 Trevor Jim, Benjamin C. Pierce, and Jérôme Vouillon. How to build a file
synchronizer. (A widely circulated piece of grey literature—dated February 22, 2002
but never published.)

This paper describes the nuts and bolts of Unison, a tool that efficiently
synchronizes the files stored on two computers. Unison is targeted to users who

Saltzer & Kaashoek Ch. sr, p. 47 June 24, 2009 12:32 am

SR–48 Suggestions for Further Reading

have their files stored in several places (e.g., on a server at work, a laptop to carry
while traveling, and a desktop at home) and would like to have all the files on the
different computers be the same.

11 Information Security

11.1 Privacy
The fundamental book about privacy is reading 1.1.6 by Alan Westin.

11.1.1 Arthur R. Miller. The Assault on Privacy. University of Michigan Press, Ann
Arbor, Michigan, 1971. ISBN: 0–47265500–0. 333 pages. (Out of print.)

This book articulately spells out the potential effect of computerized data-gathering
systems on privacy, and of possible approaches to improving legal protection. Part
of the latter is now out of date because of advances in legislation, but most of this
book is still of much interest.

11.1.2 Daniel J. Weitzner et al. Information accountability. Communications of the
ACM 51, 6 (June 2008), pages 82–87.

The paper suggests that in the modern world Westin's definition covers only a
subset of privacy. See sidebar 11.1 for a discussion of the paper’s proposed extended
definition.

11.2 Protection Architectures

11.2.1 Jerome H. Saltzer and Michael D. Schroeder. The protection of information
in computer systems. Proceedings of the IEEE 63, 9 (September 1975), pages
1278–1308.

After 30 years, this paper (an early version of the current Chapter 11) still provides
an effective treatment of protection mechanics in multiuser systems. Its emphasis
on protection inside a single system, rather than between systems connected to a
network, is one of its chief shortcomings, along with antique examples and
omission of newer techniques of certification such as authentication logic.

11.2.2 R[oger] M. Needham. Protection systems and protection implementations.
AFIPS Fall Joint Conference 41, Part I (December 1972), pages 571–578.

This paper is probably as clear an explanation of capability systems as one is likely
to find. For another important paper on capabilities, see Fabry, reading 3.1.2.

Saltzer & Kaashoek Ch. sr, p. 48 June 24, 2009 12:32 am

Suggestions for Further Reading SR–49

11.3 Certification,Trusted Computer Systems and Security Kernels

11.3.1 Butler [W.] Lampson, Martín Abadi, Michael Burrows, and Edward Wobber.

Authentication in distributed systems: Theory and practice. ACM Transactions on

Computer Systems 10, 4 (November 1992), pages 265–310.

This paper, one of a series on a logic that can be used to reason systematically about

authentication, provides a relatively complete explication of the theory and shows

how to apply it to the protocols of a distributed system.

11.3.2 Edward Wobber, Martín Abadi, Michael Burrows, and Butler W. Lampson.

Authentication in the Taos operating system. Proceedings of the Fourteenth ACM

Symposium on Operating Systems Principles, in Operating Systems Review 27, 5

(December 1993), pages 256–269.

This paper applies the authentication logic developed in reading 11.3.1 to an

experimental operating system. In addition to providing a concrete example, the

explanation of the authentication logic itself is a little more accessible than that in

the other paper.

11.3.3 Ken L. Thompson. Reflections on trusting trust. Communications of the ACM
27, 8 (August 1984), pages 761–763.

Anyone seriously interested in developing trusted computer systems should think

hard about the implications for verification that this paper raises. Thompson

demonstrates the ease with which a compiler expert can insert undetectable Trojan

Horses into a system. Reading 11.3.4 describes a way to detect a Trojan horse. [The

original idea that Thompson describes came from a paper whose identity he could

not recall at the time, and which is credited with a footnote asking for help locating

it. The paper was a technical report of the United States Air Force Electronic

Systems Division at Hanscom Air Force Base. Paul A. Karger and Roger R. Schell.

Multics Security Evaluation: Vulnerability Analysis. ESD–TR–74–193, Volume II
(June 1974), page 52.]

11.3.4 David A. Wheeler. countering trusting trust through diverse double-

compiling. Proceedings of the 21st Annual Computer Security Applications Conference

(2005), pages 28–40.

This paper proposes a solution that the author calls “diverse double compiling”, to

detect the attack discussed in Thompson’s paper on trusting trust (see reading

11.3.3). The idea is to recompile a new, untrusted compiler’s source code twice: first

using a trusted compiler, and second using the result of this compilation. If the

resulting binary for the compiler is bit-for-bit identical with the untrusted

compiler’s original binary, then the source code accurately represents the untrusted

binary, which is the first step in developing trust in the new compiler.

Saltzer & Kaashoek Ch. sr, p. 49 June 24, 2009 12:32 am

SR–50 Suggestions for Further Reading

11.3.5 Paul A. Karger et al. A VMM security kernel for the VAX architecture. 1990
IEEE Computer Society Symposium on Security and Privacy (May 1990), pages 2–19.

In the 1970s, the U.S. Department of Defense undertook a research effort to create
trusted computer systems for defense purposes and in the process created a large
body of literature on the subject. This paper distills most of the relevant ideas from
that literature into a single, readable case study, and it also provides pointers to other
key papers for those seeking more details on these ideas.

11.3.6 David D. Clark and David. R. Wilson. A comparison of commercial and
military computer security policies. 1987 IEEE Symposium on Security and Privacy
(April 1987), pages 184–194.

This thought-provoking paper outlines the requirements for security policy in
commercial settings and argues that the lattice model is often not applicable. It
suggests that these applications require a more object-oriented model in which data
may be modified only by trusted programs.

11.3.7 Jaap-Henk Hoepman and Bart Jacobs. Increased security through open
source. Communications of the ACM 50, 1 (January 2007), pages 79–83.

It has long been argued that the open design principle (see Section 11.1.4) is
important to designing secure systems. This paper extends that argument by
making the case that the availability of source code for a system is important in
ensuring the security of its implementation.

See also reading 1.3.15 by Garfinkel and Spafford, reading 5.2.1 by Lampson and Stur
gis, and reading 5.2.2 by Schroeder, Clark, and Saltzer.

11.4 Authentication

11.4.1 Robert [H.] Morris and Ken [L.] Thompson. Password security: A case
history. Communications of the ACM 22, 11 (November 1979), pages 594–597.

This paper is a model of how to explain something in an accessible way. With a
minimum of jargon and an historical development designed to simplify things for
the reader, it describes the UNIX password security mechanism.

11.4.2 Frank Stajano and Ross J. Anderson. The resurrecting duckling: Security
issues for ad-hoc wireless networks. Security Protocols Workshop 1999, pages 172–194.

This paper discusses the problem of how a new device (e.g., a surveillance camera)
can establish a secure relationship with the remote controller of the device’s owner,
instead of its neighbor’s or adversary’s. The paper’s solution is that a device will
recognize as its owner the first principal that sends it an authentication key. As soon
as the device receives a key, its status changes from newborn to imprinted, and it

Saltzer & Kaashoek Ch. sr, p. 50 June 24, 2009 12:32 am

Suggestions for Further Reading SR–51

stays faithful to that key until its death. The paper illustrates the problem and
solution, using a vivid analogy of how ducklings authenticate their mother (see
sidebar 11.5).

11.4.3 David Mazières. Self-certifying file system. Ph.D. thesis, Massachusetts
Institute of Technology Department of Electrical Engineering and Computer
Science (May 2000).

This thesis proposes a design for a cross-administrative domain file system that
separates the file system from the security mechanism using an idea called self-
certifying path names. Self-certifying names can be found in several other systems.

See also sidebar 11.6 on Kerberos and reading 3.2.5, which uses cryptographic tech
niques to secure a personal naming system.

11.5 Cryptographic techniques
The fundamental books about cryptography applied to computer systems are reading
1.2.4, by Bruce Schneier, and reading 1.3.13 by Alfred Menezes et al. In light of these
two books, the first few papers from the 1970s listed below are primarily of historical
interest. There is also a good, more elementary, treatment of cryptography in the book
by Simson Garfinkel, reading 1.3.15. Note that all of these books and papers focus on
the application of cryptography, not on crypto-mathematics, which is a distinct area of
specialization not covered in this reading list. An accessible crypto-mathematics reference
is reading 1.3.14.

11.5.1 R[onald] L. Rivest, A[di] Shamir, and L[en] Adleman. A method for
obtaining digital signatures and public-key cryptosystems. Communications of the
ACM 21, 2 (February 1978), pages 120–126.

This paper was the first to suggest a possibly workable public key system.

11.5.2 Whitfield Diffie and Martin E. Hellman. Exhaustive cryptanalysis of the
NBS Data Encryption Standard. Computer 10, 6 (June 1977), pages 74–84.

This is the unofficial analysis of how to break the DES by brute force—by building
special-purpose chips and arraying them in parallel. Twenty-five years later, brute
force still seems to be the only promising attack on DES, but the intervening
improvements in hardware technology make special chips unnecessary—an array of
personal computers on the Internet can do the job. The Advanced Encryption
Standard (AES) is DES’s successor (see Section 11.8.3.1).

11.5.3 Ross J. Anderson. Why cryptosystems fail. Communications of the ACM 37,
11 (November 1994), pages 32–40.

Saltzer & Kaashoek Ch. sr, p. 51 June 24, 2009 12:32 am

SR–52 Suggestions for Further Reading

Anderson presents a nice analysis of what goes wrong in real-world cryptosystems—
secure modules don’t necessary lead to secure systems—and the applicability of
systems thinking in their design. He points out that merely doing the best possible
design isn’t enough; a feedback loop that corrects errors in the design following
experience in the field is an equally important component that is sometimes
forgotten.

11.5.4 David Wagner and Bruce Schneier. Analysis of the SSL 3.0 protocol.
Proceedings of the Second USENIX Workshop on Electronic Commerce, Volume 2
(November 1996), pages 29–40.

This paper is useful not only because it provides a careful analysis of the security of
the subject protocol, but it also explains how the protocol works in a form that is
more accessible than the protocol specification documents. The originally
published version was almost immediately revised with corrections. The revised
version is available on the World Wide Web at
<http://www.counterpane.com/ssl.html>.

11.5.5 M[ihir] Bellare, R[an] Canetti, and H[ugo] Krawczyk. Keying hash functions
for message authentication. Proceedings of the Sixteenth International Cryptograhy
Conference (August 1996), pages 1–15. (Also see H. Krawczyk, M. Bellare, and R.
Canetti, HMAC: Keyed-hashing for message authentication, Request for Comments
RFC 2104, Internet Engineering Task Force (February 1997).

This paper and the RFC introduce and define HMAC, a hash function used in
widely deployed protocols.

11.5.6 David Chaum. Untraceable electronic mail, return addresses, and digital
pseudonyms. Communications of the ACM 24, 2 (February 1981), pages 84–88.

This paper introduces a system design, named mixnet, that allows a sender of a
message to hide its true identity from a receiver but still allow the receiver to
respond.

11.6 Adversaries (the dark side)
Section 11.11 on war stories gives a wide range of examples of how adversaries can break
a system’s security. This section lists a few papers that provide a longer and more detailed
descriptions of attacks. This is a fast-moving area; as soon as designers fend off new
attacks, adversaries try to find new attacks. This arms race is reflected in some of the fol
lowing readings, and although some of the attacks described have become ineffective (or
will over time), these papers provide valuable insights. The proceedings of Usenix Security
and Computer and Communication Security often contain papers explaining current
attacks, and conferences run by the so-called “black hat” community document the
“progress” on the dark side.

Saltzer & Kaashoek Ch. sr, p. 52 June 24, 2009 12:32 am

<http://www.counterpane.com/ssl.html>

Suggestions for Further Reading SR–53

11.6.1 Eugene Spafford. Crisis and aftermath, Communications of the ACM 32, 6
(June 1989), pages 678–687.

This paper documents how the Morris worm works. It was one of the first worms,
as well as one of the most sophisticated.

11.6.2 Jonathan Pincus and Brandon Baker. Beyond stack smashing: Recent
advances in exploiting buffer overruns, IEEE Security and Privacy 2, 4 (August 2004),
pages 20–27.

This paper describes how buffer overrun attacks have evolved since the Morris
worm.

11.6.3 Abhishek Kumar, Vern Paxson, and Nicholas Weaver. Exploiting underlying
structure for detailed reconstruction of an Internet scale event. Proceedings of the ACM
Internet Measurement Conference (October 2005), pages 351-364.

This paper describes the Witty worm and how the authors were able to track down
its source. The work contains many interesting nuggets of information.

11.6.4 Vern Paxson. An analysis of using reflectors for distributed denial-of-service
attacks. Computer Communications Review 31, 3 (July 2001), pages 38-47.

This paper describes how an adversary can trick a large set of Internet servers to send
their combined replies to a victim and in that way launch a denial-of-service attack
on the victim. It speculates on several possible directions for defending against such
attacks.

11.6.5 Chris Kanich et al. Spamalytics: an empirical analysis of spam marketing
conversion. Proceedings of the ACM Conference on Computer and Communications
Security (CCS), Arlington, Virginia (October 2008), pages 3–14.

This paper describes the infrastructure that spammers use to send unsolicited e-mail
and tries to establish what the financial reward system is for spammers. This paper
has its shortcomings, but it is one of the few papers that tries to understand the
economics behind spam.

11.6.6 Tom Jagatic, Nathaniel Johnson, Markus Jakobsson, and Filippo Menczer.
Social phishing. Communications of the ACM 50, 10 (October 2007), pages 94–100.

This study investigates the success rate of individual phishing attacks.

Saltzer & Kaashoek Ch. sr, p. 53 June 24, 2009 12:32 am

SR–54 Suggestions for Further Reading

Saltzer & Kaashoek Ch. sr, p. 54 June 24, 2009 12:32 am

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

