
Principles of Computer
System Design

An Introduction

Chapter 9
Atomicity: All-or-Nothing and
Before-or-After

Jerome H. Saltzer

M. Frans Kaashoek

Massachusetts Institute of Technology

Version 5.0

Saltzer & Kaashoek Ch. 9, p. i June 24, 2009 12:26 am

Copyright © 2009 by Jerome H. Saltzer and M. Frans Kaashoek. Some Rights Reserved.

This work is licensed under a Creative Commons Attribution-Non
commercial-Share Alike 3.0 United States License. For more information on what this
license means, visit http://creativecommons.org/licenses/by-nc-sa/3.0/us/

Designations used by companies to distinguish their products are often claimed as trade
marks or registered trademarks. In all instances in which the authors are aware of a claim,
the product names appear in initial capital or all capital letters. All trademarks that
appear or are otherwise referred to in this work belong to their respective owners.

Suggestions, Comments, Corrections, and Requests to waive license restrictions:
Please send correspondence by electronic mail to:

Saltzer@mit.edu
and

kaashoek@mit.edu

Saltzer & Kaashoek Ch. 9, p. ii June 24, 2009 12:26 am

http://creativecommons.org/licenses/by-nc-sa/3.0/us/
mailto:Saltzer@mit.edu
mailto:kaashoek@mit.edu

CHAPTER

Atomicity: All-or-Nothing
and Before-or-After 9
CHAPTER CONTENTS
Overview..9–2

9.1 Atomicity...9–4

9.1.1 All-or-Nothing Atomicity in a Database 9–5

9.1.2 All-or-Nothing Atomicity in the Interrupt Interface 9–6

9.1.3 All-or-Nothing Atomicity in a Layered Application 9–8

9.1.4 Some Actions With and Without the All-or-Nothing Property 9–10

9.1.5 Before-or-After Atomicity: Coordinating Concurrent Threads 9–13

9.1.6 Correctness and Serialization ... 9–16

9.1.7 All-or-Nothing and Before-or-After Atomicity 9–19

9.2 All-or-Nothing Atomicity I: Concepts.......................................9–21

9.2.1 Achieving All-or-Nothing Atomicity: ALL_OR_NOTHING_PUT 9–21

9.2.2 Systematic Atomicity: Commit and the Golden Rule 9–27

9.2.3 Systematic All-or-Nothing Atomicity: Version Histories 9–30

9.2.4 How Version Histories are Used .. 9–37

9.3 All-or-Nothing Atomicity II: Pragmatics9–38

9.3.1 Atomicity Logs ... 9–39

9.3.2 Logging Protocols ... 9–42

9.3.3 Recovery Procedures .. 9–45

9.3.4 Other Logging Configurations: Non-Volatile Cell Storage 9–47

9.3.5 Checkpoints .. 9–51

9.3.6 What if the Cache is not Write-Through? (Advanced Topic) 9–53

9.4 Before-or-After Atomicity I: Concepts9–54

9.4.1 	Achieving Before-or-After Atomicity: Simple Serialization 9–54

9.4.2 	The Mark-Point Discipline .. 9–58

9.4.3 	Optimistic Atomicity: Read-Capture (Advanced Topic) 9–63

9.4.4 	Does Anyone Actually Use Version Histories for Before-or-After

Atomicity? .. 9–67

9.5 Before-or-After Atomicity II: Pragmatics9–69

9.5.1 Locks ... 9–70

9.5.2 Simple Locking .. 9–72

9.5.3 Two-Phase Locking ... 9–73
 9–1

Saltzer & Kaashoek Ch. 9, p. 1	 June 24, 2009 12:26 am

9–2 CHAPTER 9 Atomicity: All-or-Nothing and Before-or-After

9.5.4 	Performance Optimizations .. 9–75

9.5.5 	Deadlock; Making Progress .. 9–76

9.6 Atomicity across Layers and Multiple Sites..............................9–79

9.6.1 	Hierarchical Composition of Transactions 9–80

9.6.2 	Two-Phase Commit ... 9–84

9.6.3 	Multiple-Site Atomicity: Distributed Two-Phase Commit 9–85

9.6.4 	The Dilemma of the Two Generals .. 9–90

9.7 A More Complete Model of Disk Failure (Advanced Topic)9–92

9.7.1 	Storage that is Both All-or-Nothing and Durable 9–92

9.8 Case Studies: Machine Language Atomicity.............................9–95

9.8.1 	Complex Instruction Sets: The General Electric 600 Line 9–95

9.8.2 	More Elaborate Instruction Sets: The IBM System/370 9–96

9.8.3 	The Apollo Desktop Computer and the Motorola M68000

Microprocessor .. 9–97
Exercises..9–98
Glossary for Chapter 9 ...9–107
Index of Chapter 9 ...9–113

Last chapter page 9–115

Overview
This chapter explores two closely related system engineering design strategies. The first
is all-or-nothing atomicity, a design strategy for masking failures that occur while inter
preting programs. The second is before-or-after atomicity, a design strategy for
coordinating concurrent activities. Chapter 8[on-line] introduced failure masking, but
did not show how to mask failures of running programs. Chapter 5 introduced coordi
nation of concurrent activities, and presented solutions to several specific problems, but
it did not explain any systematic way to ensure that actions have the before-or-after prop
erty. This chapter explores ways to systematically synthesize a design that provides both
the all-or-nothing property needed for failure masking and the before-or-after property
needed for coordination.

Many useful applications can benefit from atomicity. For example, suppose that you
are trying to buy a toaster from an Internet store. You click on the button that says “pur
chase”, but before you receive a response the power fails. You would like to have some
assurance that, despite the power failure, either the purchase went through properly or
that nothing happen at all. You don’t want to find out later that your credit card was
charged but the Internet store didn’t receive word that it was supposed to ship the
toaster. In other words, you would like to see that the action initiated by the “purchase”
button be all-or-nothing despite the possibility of failure. And if the store has only one
toaster in stock and two customers both click on the “purchase” button for a toaster at
about the same time, one of the customers should receive a confirmation of the purchase,
and the other should receive a “sorry, out of stock” notice. It would be problematic if

Saltzer & Kaashoek Ch. 9, p. 2	 June 24, 2009 12:26 am

 Overview 9–3

both customers received confirmations of purchase. In other words, both customers
would like to see that the activity initiated by their own click of the “purchase” button
occur either completely before or completely after any other, concurrent click of a “pur
chase” button.

The single conceptual framework of atomicity provides a powerful way of thinking
about both all-or-nothing failure masking and before-or-after sequencing of concurrent
activities. Atomicity is the performing of a sequence of steps, called actions, so that they
appear to be done as a single, indivisible step, known in operating system and architec
ture literature as an atomic action and in database management literature as a transaction.
When a fault causes a failure in the middle of a correctly designed atomic action, it will
appear to the invoker of the atomic action that the atomic action either completed suc
cessfully or did nothing at all—thus an atomic action provides all-or-nothing atomicity.
Similarly, when several atomic actions are going on concurrently, each atomic action will
appear to take place either completely before or completely after every other atomic
action—thus an atomic action provides before-or-after atomicity. Together, all-or-noth
ing atomicity and before-or-after atomicity provide a particularly strong form of
modularity: they hide the fact that the atomic action is actually composed of multiple
steps.

The result is a sweeping simplification in the description of the possible states of a sys
tem. This simplification provides the basis for a methodical approach to recovery from
failures and coordination of concurrent activities that simplifies design, simplifies under
standing for later maintainers, and simplifies verification of correctness. These desiderata
are particularly important because errors caused by mistakes in coordination usually
depend on the relative timing of external events and among different threads. When a
timing-dependent error occurs, the difficulty of discovering and diagnosing it can be
orders of magnitude greater than that of finding a mistake in a purely sequential activity.
The reason is that even a small number of concurrent activities can have a very large
number of potential real time sequences. It is usually impossible to determine which of
those many potential sequences of steps preceded the error, so it is effectively impossible
to reproduce the error under more carefully controlled circumstances. Since debugging
this class of error is so hard, techniques that ensure correct coordination a priori are par
ticularly valuable.

The remarkable thing is that the same systematic approach—atomicity—to failure
recovery also applies to coordination of concurrent activities. In fact, since one must be
able to deal with failures while at the same time coordinating concurrent activities, any
attempt to use different strategies for these two problems requires that the strategies be
compatible. Being able to use the same strategy for both is another sweeping
simplification.

Atomic actions are a fundamental building block that is widely applicable in com
puter system design. Atomic actions are found in database management systems, in
register management for pipelined processors, in file systems, in change-control systems
used for program development, and in many everyday applications such as word proces
sors and calendar managers.

Saltzer & Kaashoek Ch. 9, p. 3 June 24, 2009 12:26 am

9–4 CHAPTER 9 Atomicity: All-or-Nothing and Before-or-After

Sidebar 9.1: Actions and transactions The terminology used by system designers to discuss
atomicity can be confusing because the concept was identified and developed independently
by database designers and by hardware architects.
An action that changes several data values can have any or all of at least four independent
properties: it can be all-or-nothing (either all or none of the changes happen), it can be before-
or-after (the changes all happen either before or after every concurrent action), it can be
constraint-maintaining (the changes maintain some specified invariant), and it can be durable
(the changes last as long as they are needed).
Designers of database management systems customarily are concerned only with actions that
are both all-or-nothing and before-or-after, and they describe such actions as transactions. In
addition, they use the term atomic primarily in reference to all-or-nothing atomicity. On the
other hand, hardware processor architects customarily use the term atomic to describe an action
that exhibits before-or-after atomicity.
This book does not attempt to change these common usages. Instead, it uses the qualified terms
“all-or-nothing atomicity” and “before-or-after atomicity.” The unqualified term “atomic” may
imply all-or-nothing, or before-or-after, or both, depending on the context. The text uses the
term “transaction” to mean an action that is both all-or-nothing and before-or-after.
All-or-nothing atomicity and before-or-after atomicity are universally defined properties of
actions, while constraints are properties that different applications define in different ways.
Durability lies somewhere in between because different applications have different durability
requirements. At the same time, implementations of constraints and durability usually have a
prerequisite of atomicity. Since the atomicity properties are modularly separable from the other
two, this chapter focuses just on atomicity. Chapter 10[on-line] then explores how a designer
can use transactions to implement constraints and enhance durability.

The sections of this chapter define atomicity, examine some examples of atomic
actions, and explore systematic ways of achieving atomicity: version histories, logging, and
locking protocols. Chapter 10[on-line] then explores some applications of atomicity. Case
studies at the end of both chapters provide real-world examples of atomicity as a tool for
creating useful systems.

9.1 Atomicity
Atomicity is a property required in several different areas of computer system design.
These areas include managing a database, developing a hardware architecture, specifying
the interface to an operating system, and more generally in software engineering. The
table below suggests some of the kinds of problems to which atomicity is applicable. In

Saltzer & Kaashoek Ch. 9, p. 4 June 24, 2009 12:26 am

9.1 Atomicity 9–5

this chapter we will encounter examples of both kinds of atomicity in each of these dif
ferent areas.

Area All-or-nothing atomicity Before-or-after atomicity

database management updating more than one record records shared between threads

hardware architecture handling interrupts and exceptions register renaming

operating systems supervisor call interface printer queue

software engineering handling faults in layers bounded buffer

9.1.1 All-or-Nothing Atomicity in a Database

As a first example, consider a database of bank accounts. We define a procedure named
TRANSFER that debits one account and credits a second account, both of which are stored
on disk, as follows:

1 procedure TRANSFER (debit_account, credit_account, amount)
2 GET (dbdata, debit_account)
3 dbdata ← dbdata - amount
4 PUT (dbdata, debit_account)
5 GET (crdata, credit_account)
6 crdata ← crdata + amount
7 PUT (crdata, credit_account)

where debit_account and credit_account identify the records for the accounts to be deb
ited and credited, respectively.

Suppose that the system crashes while executing the PUT instruction on line 4. Even if
we use the MORE_DURABLE_PUT described in Section 8.5.4, a system crash at just the wrong
time may cause the data written to the disk to be scrambled, and the value of
debit_account lost. We would prefer that either the data be completely written to the disk
or nothing be written at all. That is, we want the PUT instruction to have the all-or-noth
ing atomicity property. Section 9.2.1 will describe a way to do that.

There is a further all-or-nothing atomicity requirement in the TRANSFER procedure.
Suppose that the PUT on line 4 is successful but that while executing line 5 or line 6 the
power fails, stopping the computer in its tracks. When power is restored, the computer
restarts, but volatile memory, including the state of the thread that was running the
TRANSFER procedure, has been lost. If someone now inquires about the balances in
debit_account and in credit_account things will not add up properly because
debit_account has a new value but credit_account has an old value. One might suggest
postponing the first PUT to be just before the second one, but that just reduces the win
dow of vulnerability, it does not eliminate it—the power could still fail in between the
two PUTs. To eliminate the window, we must somehow arrange that the two PUT instruc
tions, or perhaps even the entire TRANSFER procedure, be done as an all-or-nothing atomic

Saltzer & Kaashoek Ch. 9, p. 5 June 24, 2009 12:26 am

9–6 CHAPTER 9 Atomicity: All-or-Nothing and Before-or-After

action. In Section 9.2.3 we will devise a TRANSFER procedure that has the all-or-nothing
property, and in Section 9.3 we will see some additional ways of providing the property.

9.1.2 All-or-Nothing Atomicity in the Interrupt Interface

A second application for all-or-nothing atomicity is in the processor instruction set inter
face as seen by a thread. Recall from Chapters 2 and 5 that a thread normally performs
actions one after another, as directed by the instructions of the current program, but that
certain events may catch the attention of the thread’s interpreter, causing the interpreter,
rather than the program, to supply the next instruction. When such an event happens, a
different program, running in an interrupt thread, takes control.

If the event is a signal arriving from outside the interpreter, the interrupt thread may
simply invoke a thread management primitive such as ADVANCE, as described in Section
5.6.4, to alert some other thread about the event. For example, an I/O operation that the
other thread was waiting for may now have completed. The interrupt handler then
returns control to the interrupted thread. This example requires before-or-after atomicity
between the interrupt thread and the interrupted thread. If the interrupted thread was in
the midst of a call to the thread manager, the invocation of ADVANCE by the interrupt
thread should occur either before or after that call.

Another possibility is that the interpreter has detected that something is going wrong
in the interrupted thread. In that case, the interrupt event invokes an exception handler,
which runs in the environment of the original thread. (Sidebar 9.2 offers some exam
ples.) The exception handler either adjusts the environment to eliminate some problem
(such as a missing page) so that the original thread can continue, or it declares that the
original thread has failed and terminates it. In either case, the exception handler will need
to examine the state of the action that the original thread was performing at the instant
of the interruption—was that action finished, or is it in a partially done state?

Ideally, the handler would like to see an all-or-nothing report of the state: either the
instruction that caused the exception completed or it didn’t do anything. An all-or-noth
ing report means that the state of the original thread is described entirely with values
belonging to the layer in which the exception handler runs. An example of such a value
is the program counter, which identifies the next instruction that the thread is to execute.
An in-the-middle report would mean that the state description involves values of a lower
layer, probably the operating system or the hardware processor itself. In that case, know
ing the next instruction is only part of the story; the handler would also need to know
which parts of the current instruction were executed and which were not. An example
might be an instruction that increments an address register, retrieves the data at that new
address, and adds that data value to the value in another register. If retrieving the data
causes a missing-page exception, the description of the current state is that the address
register has been incremented but the retrieval and addition have not yet been per
formed. Such an in-the-middle report is problematic because after the handler retrieves
the missing page it cannot simply tell the processor to jump to the instruction that
failed—that would increment the address register again, which is not what the program-

Saltzer & Kaashoek Ch. 9, p. 6 June 24, 2009 12:26 am

9.1 Atomicity 9–7

Sidebar 9.2: Events that might lead to invoking an exception handler

1. 	A hardware fault occurs:

• 	 The processor detects a memory parity fault.
• 	 A sensor reports that the electric power has failed; the energy left in the power supply

may be just enough to perform a graceful shutdown.

2. 	A hardware or software interpreter encounters something in the program that is clearly
wrong:

• 	 The program tried to divide by zero.
• 	 The program supplied a negative argument to a square root function.

3. 	Continuing requires some resource allocation or deferred initialization:

• 	 The running thread encountered a missing-page exception in a virtual memory system.
• 	The running thread encountered an indirection exception, indicating that it

encountered an unresolved procedure linkage in the current program.

4. 	More urgent work needs to take priority, so the user wishes to terminate the thread:

• 	 This program is running much longer than expected.
• 	The program is running normally, but the user suddenly realizes that it is time to

catch the last train home.

5. The user realizes that something is wrong and decides to terminate the thread:

• 	 Calculating e, the program starts to display 3.1415…
• 	 The user asked the program to copy the wrong set of files.

6. 	Deadlock:

• 	 Thread A has acquired the scanner, and is waiting for memory to become free; thread
B has acquired all available memory, and is waiting for the scanner to be released.
Either the system notices that this set of waits cannot be resolved or, more likely, a
timer that should never expire eventually expires. The system or the timer signals an
exception to one or both of the deadlocked threads.

mer expected. Jumping to the next instruction isn’t right, either, because that would
omit the addition step. An all-or-nothing report is preferable because it avoids the need
for the handler to peer into the details of the next lower layer. Modern processor design
ers are generally careful to avoid designing instructions that don’t have the all-or-nothing
property. As will be seen shortly, designers of higher-layer interpreters must be similarly
careful.

Sections 9.1.3 and 9.1.4 explore the case in which the exception terminates the run
ning thread, thus creating a fault. Section 9.1.5 examines the case in which the
interrupted thread continues, oblivious (one hopes) to the interruption.

Saltzer & Kaashoek Ch. 9, p. 7	 June 24, 2009 12:26 am

9–8 CHAPTER 9 Atomicity: All-or-Nothing and Before-or-After

9.1.3 All-or-Nothing Atomicity in a Layered Application

A third example of all-or-nothing atomicity lies in the challenge presented by a fault in
a running program: at the instant of the fault, the program is typically in the middle of
doing something, and it is usually not acceptable to leave things half-done. Our goal is
to obtain a more graceful response, and the method will be to require that some sequence
of actions behave as an atomic action with the all-or-nothing property. Atomic actions
are closely related to the modularity that arises when things are organized in layers. Lay
ered components have the feature that a higher layer can completely hide the existence
of a lower layer. This hiding feature makes layers exceptionally effective at error contain
ment and for systematically responding to faults.

To see why, recall the layered structure of the calendar management program of
Chapter 2, reproduced in Figure 9.19.1 (that figure may seem familiar—it is a copy of
Figure 2.10). The calendar program implements each request of the user by executing a
sequence of Java language statements. Ideally, the user will never notice any evidence of
the composite nature of the actions implemented by the calendar manager. Similarly,
each statement of the Java language is implemented by several actions at the hardware
layer. Again, if the Java interpreter is carefully implemented, the composite nature of the
implementation in terms of machine language will be completely hidden from the Java
programmer.

Human user
generating
requests

Calendar
Program

Java
Interpreter

Interface

Calendar manager
layer interface

Java language
layer interface

Machine language
layer interface

hardware

Typical instruction
across this interface

Add new event on
February 27

nextch = instring[j];

add R1,R2

FIGURE 9.1

An application system with three layers of interpretation.The user has requested an action that
will fail, but the failure will be discovered at the lowest layer. A graceful response involves ato
micity at each interface.

Saltzer & Kaashoek Ch. 9, p. 8 June 24, 2009 12:26 am

9.1 Atomicity 9–9

Now consider what happens if the hardware processor detects a condition that should
be handled as an exception—for example, a register overflow. The machine is in the mid
dle of interpreting an action at the machine language layer interface—an ADD instruction
somewhere in the middle of the Java interpreter program. That ADD instruction is itself
in the middle of interpreting an action at the Java language interface—a Java expression
to scan an array. That Java expression in turn is in the middle of interpreting an action
at the user interface—a request from the user to add a new event to the calendar. The
report “Overflow exception caused by the ADD instruction at location 41574” is not intel
ligible to the user at the user interface; that description is meaningful only at the machine
language interface. Unfortunately, the implication of being “in the middle” of higher-
layer actions is that the only accurate description of the current state of affairs is in terms
of the progress of the machine language program.

The actual state of affairs in our example as understood by an all-seeing observer
might be the following: the register overflow was caused by adding one to a register that
contained a two’s complement negative one at the machine language layer. That
machine language add instruction was part of an action to scan an array of characters at
the Java layer and a zero means that the scan has reached the end of the array. The array
scan was embarked upon by the Java layer in response to the user’s request to add an
event on February 31. The highest-level interpretation of the overflow exception is “You
tried to add an event on a non-existent date”. We want to make sure that this report goes
to the end user, rather than the one about register overflow. In addition, we want to be
able to assure the user that this mistake has not caused an empty event to be added some
where else in the calendar or otherwise led to any other changes to the calendar. Since
the system couldn’t do the requested change it should do nothing but report the error.
Either a low-level error report or muddled data would reveal to the user that the action
was composite.

With the insight that in a layered application, we want a fault detected by a lower
layer to be contained in a particular way we can now propose a more formal definition
of all-or-nothing atomicity:

All-or-nothing atomicity

A sequence of steps is an all-or-nothing action if, from the point of view of its
invoker, the sequence always either

• completes,
or

• 	 aborts in such a way that it appears that the sequence had never been
undertaken in the first place. That is, it backs out.

In a layered application, the idea is to design each of the actions of each layer to be
all-or-nothing. That is, whenever an action of a layer is carried out by a sequence of

Saltzer & Kaashoek Ch. 9, p. 9	 June 24, 2009 12:26 am

9–10 CHAPTER 9 Atomicity: All-or-Nothing and Before-or-After

actions of the next lower layer, the action either completes what it was asked to do or else
it backs out, acting as though it had not been invoked at all. When control returns to a
higher layer after a lower layer detects a fault, the problem of being “in the middle” of an
action thus disappears.

In our calendar management example, we might expect that the machine language
layer would complete the add instruction but signal an overflow exception; the Java
interpreter layer would, upon receiving the overflow exception might then decide that its
array scan has ended, and return a report of “scan complete, value not found” to the cal
endar management layer; the calendar manager would take this not-found report as an
indication that it should back up, completely undo any tentative changes, and tell the
user that the request to add an event on that date could not be accomplished because the
date does not exist.

Thus some layers run to completion, while others back out and act as though they
had never been invoked, but either way the actions are all-or-nothing. In this example,
the failure would probably propagate all the way back to the human user to decide what
to do next. A different failure (e.g. “there is no room in the calendar for another event”)
might be intercepted by some intermediate layer that knows of a way to mask it (e.g., by
allocating more storage space). In that case, the all-or-nothing requirement is that the
layer that masks the failure find that the layer below has either never started what was to
be the current action or else it has completed the current action but has not yet under
taken the next one.

All-or-nothing atomicity is not usually achieved casually, but rather by careful design
and specification. Designers often get it wrong. An unintelligible error message is the
typical symptom that a designer got it wrong. To gain some insight into what is involved,
let us examine some examples.

9.1.4 Some Actions With and Without the All-or-Nothing Property

Actions that lack the all-or-nothing property have frequently been discovered upon add
ing multilevel memory management to a computer architecture, especially to a processor
that is highly pipelined. In this case, the interface that needs to be all-or-nothing lies
between the processor and the operating system. Unless the original machine architect
designed the instruction set with missing-page exceptions in mind, there may be cases in
which a missing-page exception can occur “in the middle” of an instruction, after the
processor has overwritten some register or after later instructions have entered the pipe
line. When such a situation arises, the later designer who is trying to add the multilevel
memory feature is trapped. The instruction cannot run to the end because one of the
operands it needs is not in real memory. While the missing page is being retrieved from
secondary storage, the designer would like to allow the operating system to use the pro
cessor for something else (perhaps even to run the program that fetches the missing
page), but reusing the processor requires saving the state of the currently executing pro
gram, so that it can be restarted later when the missing page is available. The problem is
how to save the next-instruction pointer.

Saltzer & Kaashoek Ch. 9, p. 10 June 24, 2009 12:26 am

9.1 Atomicity 9–11

If every instruction is an all-or-nothing action, the operating system can simply save
as the value of the next-instruction pointer the address of the instruction that encoun
tered the missing page. The resulting saved state description shows that the program is
between two instructions, one of which has been completely executed, and the next one
of which has not yet begun. Later, when the page is available, the operating system can
restart the program by reloading all of the registers and setting the program counter to
the place indicated by the next-instruction pointer. The processor will continue, starting
with the instruction that previously encountered the missing page exception; this time it
should succeed. On the other hand, if even one instruction of the instruction set lacks
the all-or-nothing property, when an interrupt happens to occur during the execution of
that instruction it is not at all obvious how the operating system can save the processor
state for a future restart. Designers have come up with several techniques to retrofit the
all-or-nothing property at the machine language interface. Section 9.8 describes some
examples of machine architectures that had this problem and the techniques that were
used to add virtual memory to them.

A second example is the supervisor call (SVC). Section 5.3.4 pointed out that the
SVC instruction, which changes both the program counter and the processor mode bit
(and in systems with virtual memory, other registers such as the page map address regis
ter), needs to be all-or-nothing, to ensure that all (or none) of the intended registers
change. Beyond that, the SVC invokes some complete kernel procedure. The designer
would like to arrange that the entire call, (the combination of the SVC instruction and
the operation of the kernel procedure itself) be an all-or-thing action. An all-or-nothing
design allows the application programmer to view the kernel procedure as if it is an exten
sion of the hardware. That goal is easier said than done, since the kernel procedure may
detect some condition that prevents it from carrying out the intended action. Careful
design of the kernel procedure is thus required.

Consider an SVC to a kernel READ procedure that delivers the next typed keystroke to
the caller. The user may not have typed anything yet when the application program calls
READ, so the the designer of READ must arrange to wait for the user to type something. By
itself, this situation is not especially problematic, but it becomes more so when there is
also a user-provided exception handler. Suppose, for example, a thread timer can expire
during the call to READ and the user-provided exception handler is to decide whether or
not the thread should continue to run a while longer. The scenario, then, is the user pro
gram calls READ, it is necessary to wait, and while waiting, the timer expires and control
passes to the exception handler. Different systems choose one of three possibilities for the
design of the READ procedure, the last one of which is not an all-or-nothing design:

1. 	An all-or-nothing design that implements the “nothing” option (blocking read): Seeing
no available input, the kernel procedure first adjusts return pointers (“push the PC
back”) to make it appear that the application program called AWAIT just ahead of its
call to the kernel READ procedure and then it transfers control to the kernel AWAIT

entry point. When the user finally types something, causing AWAIT to return, the
user’s thread re-executes the original kernel call to READ, this time finding the typed

Saltzer & Kaashoek Ch. 9, p. 11	 June 24, 2009 12:26 am

9–12 CHAPTER 9 Atomicity: All-or-Nothing and Before-or-After

input. With this design, if a timer exception occurs while waiting, when the
exception handler investigates the current state of the thread it finds the answer
“the application program is between instructions; its next instruction is a call to
READ.” This description is intelligible to a user-provided exception handler, and it
allows that handler several options. One option is to continue the thread, meaning
go ahead and execute the call to READ. If there is still no input, READ will again push
the PC back and transfer control to AWAIT. Another option is for the handler to save
this state description with a plan of restoring a future thread to this state at some
later time.

2. 	An all-or-nothing design that implements the “all” option (non-blocking read): Seeing
no available input, the kernel immediately returns to the application program with
a zero-length result, expecting that the program will look for and properly handle
this case. The program would probably test the length of the result and if zero, call
AWAIT itself or it might find something else to do instead. As with the previous
design, this design ensures that at all times the user-provided timer exception
handler will see a simple description of the current state of the thread—it is
between two user program instructions. However, some care is needed to avoid a
race between the call to AWAIT and the arrival of the next typed character.

3. 	A blocking read design that is neither “all” nor “nothing” and therefore not atomic: The
kernel READ procedure itself calls AWAIT, blocking the thread until the user types a
character. Although this design seems conceptually simple, the description of the
state of the thread from the point of view of the timer exception handler is not
simple. Rather than “between two user instructions”, it is “waiting for something
to happen in the middle of a user call to kernel procedure READ”. The option of
saving this state description for future use has been foreclosed. To start another
thread with this state description, the exception handler would need to be able to
request “start this thread just after the call to AWAIT in the middle of the kernel READ

entry.” But allowing that kind of request would compromise the modularity of the
user-kernel interface. The user-provided exception handler could equally well
make a request to restart the thread anywhere in the kernel, thus bypassing its gates
and compromising its security.

The first and second designs correspond directly to the two options in the definition
of an all-or-nothing action, and indeed some operating systems offer both options. In the
first design the kernel program acts in a way that appears that the call had never taken
place, while in the second design the kernel program runs to completion every time it is
called. Both designs make the kernel procedure an all-or-nothing action, and both lead
to a user-intelligible state description—the program is between two of its instructions—
if an exception should happen while waiting.

One of the appeals of the client/server model introduced in Chapter 4 is that it tends
to force the all-or-nothing property out onto the design table. Because servers can fail
independently of clients, it is necessary for the client to think through a plan for recovery

Saltzer & Kaashoek Ch. 9, p. 12	 June 24, 2009 12:26 am

9.1 Atomicity 9–13

from server failure, and a natural model to use is to make every action offered by a server
all-or-nothing.

9.1.5 Before-or-After Atomicity: Coordinating Concurrent Threads

In Chapter 5 we learned how to express opportunities for concurrency by creating
threads, the goal of concurrency being to improve performance by running several things
at the same time. Moreover, Section 9.1.2 above pointed out that interrupts can also cre
ate concurrency. Concurrent threads do not represent any special problem until their
paths cross. The way that paths cross can always be described in terms of shared, writable
data: concurrent threads happen to take an interest in the same piece of writable data at
about the same time. It is not even necessary that the concurrent threads be running
simultaneously; if one is stalled (perhaps because of an interrupt) in the middle of an
action, a different, running thread can take an interest in the data that the stalled thread
was, and will sometime again be, working with.

From the point of view of the programmer of an application, Chapter 5 introduced
two quite different kinds of concurrency coordination requirements: sequence coordina
tion and before-or-after atomicity. Sequence coordination is a constraint of the type
“Action W must happen before action X”. For correctness, the first action must complete
before the second action begins. For example, reading of typed characters from a key
board must happen before running the program that presents those characters on a
display. As a general rule, when writing a program one can anticipate the sequence coor
dination constraints, and the programmer knows the identity of the concurrent actions.
Sequence coordination thus is usually explicitly programmed, using either special lan
guage constructs or shared variables such as the eventcounts of Chapter 5.

In contrast, before-or-after atomicity is a more general constraint that several actions
that concurrently operate on the same data should not interfere with one another. We
define before-or-after atomicity as follows:

Before-or-after atomicity

Concurrent actions have the before-or-after property if their effect from the point of
view of their invokers is the same as if the actions occurred either completely before
or completely after one another.

In Chapter 5 we saw how before-or-after actions can be created with explicit locks and
a thread manager that implements the procedures ACQUIRE and RELEASE. Chapter 5 showed
some examples of before-or-after actions using locks, and emphasized that programming
correct before-or-after actions, for example coordinating a bounded buffer with several
producers or several consumers, can be a tricky proposition. To be confident of correct
ness, one needs to establish a compelling argument that every action that touches a
shared variable follows the locking protocol.

Saltzer & Kaashoek Ch. 9, p. 13 June 24, 2009 12:26 am

9–14 CHAPTER 9 Atomicity: All-or-Nothing and Before-or-After

One thing that makes before-or-after atomicity different from sequence coordination
is that the programmer of an action that must have the before-or-after property does not
necessarily know the identities of all the other actions that might touch the shared vari
able. This lack of knowledge can make it problematic to coordinate actions by explicit
program steps. Instead, what the programmer needs is an automatic, implicit mechanism
that ensures proper handling of every shared variable. This chapter will describe several
such mechanisms. Put another way, correct coordination requires discipline in the way
concurrent threads read and write shared data.

Applications for before-or-after atomicity in a computer system abound. In an oper
ating system, several concurrent threads may decide to use a shared printer at about the
same time. It would not be useful for printed lines of different threads to be interleaved
in the printed output. Moreover, it doesn’t really matter which thread gets to use the
printer first; the primary consideration is that one use of the printer be complete before
the next begins, so the requirement is to give each print job the before-or-after atomicity
property.

For a more detailed example, let us return to the banking application and the TRANSFER

procedure. This time the account balances are held in shared memory variables (recall
that the declaration keyword reference means that the argument is call-by-reference, so
that TRANSFER can change the values of those arguments):

procedure TRANSFER (reference debit_account, reference credit_account, amount)
debit_account ← debit_account - amount
credit_account ← credit_account + amount

Despite their unitary appearance, a program statement such as “X ← X + Y” is actu
ally composite: it involves reading the values of X and Y, performing an addition, and
then writing the result back into X. If a concurrent thread reads and changes the value of
X between the read and the write done by this statement, that other thread may be sur
prised when this statement overwrites its change.

Suppose this procedure is applied to accounts A (initially containing $300) and B (ini
tially containing $100) as in

TRANSFER (A, B, $10)

We expect account A, the debit account, to end up with $290, and account B, the
credit account, to end up with $110. Suppose, however, a second, concurrent thread is
executing the statement

TRANSFER (B, C, $25)

where account C starts with $175. When both threads complete their transfers, we expect
B to end up with $85 and C with $200. Further, this expectation should be fulfilled no
matter which of the two transfers happens first. But the variable credit_account in the
first thread is bound to the same object (account B) as the variable debit_account in the
second thread. The risk to correctness occurs if the two transfers happen at about the
same time. To understand this risk, consider Figure 9.2, which illustrates several possible
time sequences of the READ and WRITE steps of the two threads with respect to variable B.

Saltzer & Kaashoek Ch. 9, p. 14 June 24, 2009 12:26 am

9.1 Atomicity 9–15

With each time sequence the figure shows the history of values of the cell containing the
balance of account B. If both steps 1–1 and 1–2 precede both steps 2–1 and 2–2, (or vice-
versa) the two transfers will work as anticipated, and B ends up with $85. If, however,
step 2–1 occurs after step 1–1, but before step 1–2, a mistake will occur: one of the two
transfers will not affect account B, even though it should have. The first two cases illus
trate histories of shared variable B in which the answers are the correct result; the
remaining four cases illustrate four different sequences that lead to two incorrect values
for B.

Thread #1 (credit_account is B)

.

.

1–1

1–2 WRITE B

READ B
.

Thread #2 (debit_account is B)

.

.

2–1

2–2 WRITE B

READ B
.

correct result: 	 time

case 1: 	 Thread #1: READ B WRITE B
Thread #2: READ B WRITE B
Value of B: 100 110 85

case 2: 	 Thread #1: READ B WRITE B
Thread #2: READ B WRITE B
Value of B: 100 75 85

wrong results:

case 3: 	Thread #1: READ B WRITE B
Thread #2: READ B WRITE B
Value of B: 100 110 75

case 4: 	Thread #1: READ B WRITE B
Thread #2: READ B WRITE B
Value of B: 100 75 110

case 5: 	Thread #1: READ B WRITE B
Thread #2: READ B WRITE B
Value of B: 100 110 75

case 6: 	Thread #1: READ B WRITE B
Thread #2: READ B WRITE B
Value of B: 100 75 110

FIGURE 9.2

Six possible histories of variable B if two threads that share B do not coordinate their concur
rent activities.

Saltzer & Kaashoek Ch. 9, p. 15 	 June 24, 2009 12:26 am

9–16 CHAPTER 9 Atomicity: All-or-Nothing and Before-or-After

Thus our goal is to ensure that one of the first two time sequences actually occurs.
One way to achieve this goal is that the two steps 1–1 and 1–2 should be atomic, and the
two steps 2–1 and 2–2 should similarly be atomic. In the original program, the steps

debit_account ← debit_account - amount
and

credit_account ← credit_account + amount

should each be atomic. There should be no possibility that a concurrent thread that
intends to change the value of the shared variable debit_account read its value between
the READ and WRITE steps of this statement.

9.1.6 Correctness and Serialization

The notion that the first two sequences of Figure 9.2 are correct and the other four are
wrong is based on our understanding of the banking application. It would be better to
have a more general concept of correctness that is independent of the application. Appli
cation independence is a modularity goal: we want to be able to make an argument for
correctness of the mechanism that provides before-or-after atomicity without getting
into the question of whether or not the application using the mechanism is correct.

There is such a correctness concept: coordination among concurrent actions can be
considered to be correct if every result is guaranteed to be one that could have been obtained
by some purely serial application of those same actions.

The reasoning behind this concept of cor
rectness involves several steps. Consider
Figure 9.3,which shows, abstractly, the effect old system

state new system
state

 action
of applying some action, whether atomic or
not, to a system: the action changes the state
of the system. Now, if we are sure that:

1. 	the old state of the system was correct FIGURE 9.3
from the point of view of the
application, and	 A single action takes a system from one

state to another state.
2. 	the action, performing all by itself,

correctly transforms any correct old state to a correct new state,

then we can reason that the new state must also be correct. This line of reasoning holds
for any application-dependent definition of “correct” and “correctly transform”, so our
reasoning method is independent of those definitions and thus of the application.
The corresponding requirement when several actions act concurrently, as in Figure 9.4,
is that the resulting new state ought to be one of those that would have resulted from
some serialization of the several actions, as in Figure 9.5. This correctness criterion means
that concurrent actions are correctly coordinated if their result is guaranteed to be one
that would have been obtained by some purely serial application of those same actions.

Saltzer & Kaashoek Ch. 9, p. 16	 June 24, 2009 12:26 am

9.1 Atomicity 9–17

FIGURE 9.4

action #3

action #1

old system
state

new system
state

action #2

When several actions act con
currently, they together
produce a new state. If the
actions are before-or-after and
the old state was correct, the
new state will be correct.

So long as the only coordination requirement is before-or-after atomicity, any serializa
tion will do.

Moreover, we do not even need to insist that the system actually traverse the interme
diate states along any particular path of Figure 9.5—it may instead follow the dotted
trajectory through intermediate states that are not by themselves correct, according to the
application’s definition. As long as the intermediate states are not visible above the
implementing layer, and the system is guaranteed to end up in one of the acceptable final
states, we can declare the coordination to be correct because there exists a trajectory that
leads to that state for which a correctness argument could have been applied to every step.

Since our definition of before-or-after atomicity is that each before-or-after action act
as though it ran either completely before or completely after each other before-or-after
action, before-or-after atomicity leads directly to this concept of correctness. Put another
way, before-or-after atomicity has the effect of serializing the actions, so it follows that
before-or-after atomicity guarantees correctness of coordination. A different way of

old system
state

final
state

C

final
state

B

final
state

AAA
#1

AA #2 AA#3

AA#3

AA
#2

AA #2 AA#3 AA#1

FIGURE 9.5

We insist that the final state be one that could have been reached by some serialization of the
atomic actions, but we don't care which serialization. In addition, we do not need to insist that
the intermediate states ever actually exist. The actual state trajectory could be that shown by
the dotted lines, but only if there is no way of observing the intermediate states from the
outside.

Saltzer & Kaashoek Ch. 9, p. 17 June 24, 2009 12:26 am

9–18 CHAPTER 9 Atomicity: All-or-Nothing and Before-or-After

expressing this idea is to say that when concurrent actions have the before-or-after prop
erty, they are serializable: there exists some serial order of those concurrent transactions that
would, if followed, lead to the same ending state.* Thus in Figure 9.2, the sequences of case
1 and case 2 could result from a serialized order, but the actions of cases 3 through 6
could not.

In the example of Figure 9.2, there were only two concurrent actions and each of the
concurrent actions had only two steps. As the number of concurrent actions and the
number of steps in each action grows there will be a rapidly growing number of possible
orders in which the individual steps can occur, but only some of those orders will ensure
a correct result. Since the purpose of concurrency is to gain performance, one would like
to have a way of choosing from the set of correct orders the one correct order that has
the highest performance. As one might guess, making that choice can in general be quite
difficult. In Sections 9.4 and 9.5 of this chapter we will encounter several programming
disciplines that ensure choice from a subset of the possible orders, all members of which
are guaranteed to be correct but, unfortunately, may not include the correct order that
has the highest performance.

In some applications it is appropriate to use a correctness requirement that is stronger
than serializability. For example, the designer of a banking system may want to avoid
anachronisms by requiring what might be called external time consistency: if there is any
external evidence (such as a printed receipt) that before-or-after action T1 ended before
before-or-after action T2 began, the serialization order of T1 and T2 inside the system
should be that T1 precedes T2. For another example of a stronger correctness require
ment, a processor architect may require sequential consistency: when the processor
concurrently performs multiple instructions from the same instruction stream, the result
should be as if the instructions were executed in the original order specified by the
programmer.

Returning to our example, a real funds-transfer application typically has several dis
tinct before-or-after atomicity requirements. Consider the following auditing procedure;
its purpose is to verify that the sum of the balances of all accounts is zero (in double-entry
bookkeeping, accounts belonging to the bank, such as the amount of cash in the vault,
have negative balances):

procedure AUDIT()

sum ← 0

for each W ← in bank.accounts

sum ← sum + W.balance

if (sum ≠ 0) call for investigation

Suppose that AUDIT is running in one thread at the same time that another thread is
transferring money from account A to account B. If AUDIT examines account A before the
transfer and account B after the transfer, it will count the transferred amount twice and

* The general question of whether or not a collection of existing transactions is serializable is an
advanced topic that is addressed in database management. Problem set 36 explores one method of
answering this question.

Saltzer & Kaashoek Ch. 9, p. 18 June 24, 2009 12:26 am

9.1 Atomicity 9–19

thus will compute an incorrect answer. So the entire auditing procedure should occur
either before or after any individual transfer: we want it to be a before-or-after action.

There is yet another before-or-after atomicity requirement: if AUDIT should run after
the statement in TRANSFER

debit_account ← debit_account - amount

but before the statement

credit_account ← credit_account + amount

it will calculate a sum that does not include amount; we therefore conclude that the two
balance updates should occur either completely before or completely after any AUDIT

action; put another way, TRANSFER should be a before-or-after action.

9.1.7 All-or-Nothing and Before-or-After Atomicity

We now have seen examples of two forms of atomicity: all-or-nothing and before-or
after. These two forms have a common underlying goal: to hide the internal structure of
an action. With that insight, it becomes apparent that atomicity is really a unifying
concept:

Atomicity

An action is atomic if there is no way for a higher layer to discover the internal structure
of its implementation.

This description is really the fundamental definition of atomicity. From it, one can
immediately draw two important consequences, corresponding to all-or-nothing atom
icity and to before-or-after atomicity:

1. 	From the point of view of a procedure that invokes an atomic action, the atomic
action always appears either to complete as anticipated, or to do nothing. This
consequence is the one that makes atomic actions useful in recovering from
failures.

2. 	From the point of view of a concurrent thread, an atomic action acts as though it
occurs either completely before or completely after every other concurrent atomic
action. This consequence is the one that makes atomic actions useful for
coordinating concurrent threads.

These two consequences are not fundamentally different. They are simply two per
spectives, the first from other modules within the thread that invokes the action, the
second from other threads. Both points of view follow from the single idea that the inter
nal structure of the action is not visible outside of the module that implements the
action. Such hiding of internal structure is the essence of modularity, but atomicity is an
exceptionally strong form of modularity. Atomicity hides not just the details of which

Saltzer & Kaashoek Ch. 9, p. 19	 June 24, 2009 12:26 am

9–20 CHAPTER 9 Atomicity: All-or-Nothing and Before-or-After

steps form the atomic action, but the very fact that it has structure. There is a kinship
between atomicity and other system-building techniques such as data abstraction and cli
ent/server organization. Data abstraction has the goal of hiding the internal structure of
data; client/server organization has the goal of hiding the internal structure of major sub
systems. Similarly, atomicity has the goal of hiding the internal structure of an action.
All three are methods of enforcing industrial-strength modularity, and thereby of guar
anteeing absence of unanticipated interactions among components of a complex system.

We have used phrases such as “from the point of view of the invoker” several times,
suggesting that there may be another point of view from which internal structure is
apparent. That other point of view is seen by the implementer of an atomic action, who
is often painfully aware that an action is actually composite, and who must do extra work
to hide this reality from the higher layer and from concurrent threads. Thus the inter
faces between layers are an essential part of the definition of an atomic action, and they
provide an opportunity for the implementation of an action to operate in any way that
ends up providing atomicity.

There is one more aspect of hiding the internal structure of atomic actions: atomic
actions can have benevolent side effects. A common example is an audit log, where
atomic actions that run into trouble record the nature of the detected failure and the
recovery sequence for later analysis. One might think that when a failure leads to backing
out, the audit log should be rolled back, too; but rolling it back would defeat its pur
pose—the whole point of an audit log is to record details about the failure. The
important point is that the audit log is normally a private record of the layer that imple
mented the atomic action; in the normal course of operation it is not visible above that
layer, so there is no requirement to roll it back. (A separate atomicity requirement is to
ensure that the log entry that describes a failure is complete and not lost in the ensuing
recovery.)

Another example of a benevolent side effect is performance optimization. For exam
ple, in a high-performance data management system, when an upper layer atomic action
asks the data management system to insert a new record into a file, the data management
system may decide as a performance optimization that now is the time to rearrange the
file into a better physical order. If the atomic action fails and aborts, it need ensure only
that the newly-inserted record be removed; the file does not need to be restored to its
older, less efficient, storage arrangement. Similarly, a lower-layer cache that now contains
a variable touched by the atomic action does not need to be cleared and a garbage collec
tion of heap storage does not need to be undone. Such side effects are not a problem, as
long as they are hidden from the higher-layer client of the atomic action except perhaps
in the speed with which later actions are carried out, or across an interface that is
intended to report performance measures or failures.

Saltzer & Kaashoek Ch. 9, p. 20 June 24, 2009 12:26 am

9.2 All-or-Nothing Atomicity I: Concepts 9–21

9.2 All-or-Nothing Atomicity I: Concepts
Section 9.1 of this chapter defined the goals of all-or-nothing atomicity and before-or
after atomicity, and provided a conceptual framework that at least in principle allows a
designer to decide whether or not some proposed algorithm correctly coordinates con
current activities. However, it did not provide any examples of actual implementations
of either goal. This section of the chapter, together with the next one, describe some
widely applicable techniques of systematically implementing all-or-nothing atomicity.
Later sections of the chapter will do the same for before-or-after atomicity.

Many of the examples employ the technique introduced in Chapter 5 called boot
strapping, a method that resembles inductive proof. To review, bootstrapping means to
first look for a systematic way to reduce a general problem to some much-narrowed par
ticular version of that same problem. Then, solve the narrow problem using some
specialized method that might work only for that case because it takes advantage of the
specific situation. The general solution then consists of two parts: a special-case tech
nique plus a method that systematically reduces the general problem to the special case.
Recall that Chapter 5 tackled the general problem of creating before-or-after actions
from arbitrary sequences of code by implementing a procedure named ACQUIRE that itself
required before-or-after atomicity of two or three lines of code where it reads and then
sets a lock value. It then implemented that before-or-after action with the help of a spe
cial hardware feature that directly makes a before-or-after action of the read and set
sequence, and it also exhibited a software implementation (in Sidebar 5.2) that relies only
on the hardware performing ordinary LOADs and STOREs as before-or-after actions. This
chapter uses bootstrapping several times. The first example starts with the special case
and then introduces a way to reduce the general problem to that special case. The reduc
tion method, called the version history, is used only occasionally in practice, but once
understood it becomes easy to see why the more widely used reduction methods that will
be described in Section 9.3 work.

9.2.1 Achieving All-or-Nothing Atomicity: ALL_OR_NOTHING_PUT

The first example is of a scheme that does an all-or-nothing update of a single disk sector.
The problem to be solved is that if a system crashes in the middle of a disk write (for
example, the operating system encounters a bug or the power fails), the sector that was
being written at the instant of the failure may contain an unusable muddle of old and
new data. The goal is to create an all-or-nothing PUT with the property that when GET later
reads the sector, it always returns either the old or the new data, but never a muddled
mixture.

To make the implementation precise, we develop a disk fault tolerance model that is
a slight variation of the one introduced in Chapter 8[on-line], taking as an example
application a calendar management program for a personal computer. The user is hoping
that, if the system fails while adding a new event to the calendar, when the system later
restarts the calendar will be safely intact. Whether or not the new event ended up in the

Saltzer & Kaashoek Ch. 9, p. 21 June 24, 2009 12:26 am

9–22 CHAPTER 9 Atomicity: All-or-Nothing and Before-or-After

calendar is less important than that the calendar not be damaged by inopportune timing
of the system failure. This system comprises a human user, a display, a processor, some
volatile memory, a magnetic disk, an operating system, and the calendar manager pro
gram. We model this system in several parts:

Overall system fault tolerance model.

• 	 error-free operation: All work goes according to expectations. The user initiates
actions such as adding events to the calendar and the system confirms the actions
by displaying messages to the user.

• 	tolerated error: The user who has initiated an action notices that the system
failed before it confirmed completion of the action and, when the system is
operating again, checks to see whether or not it actually performed that action.

• 	 untolerated error: The system fails without the user noticing, so the user does
not realize that he or she should check or retry an action that the system may not
have completed.

The tolerated error specification means that, to the extent possible, the entire system
is fail-fast: if something goes wrong during an update, the system stops before taking any
more requests, and the user realizes that the system has stopped. One would ordinarily
design a system such as this one to minimize the chance of the untolerated error, for
example by requiring supervision by a human user. The human user then is in a position
to realize (perhaps from lack of response) that something has gone wrong. After the sys
tem restarts, the user knows to inquire whether or not the action completed. This design
strategy should be familiar from our study of best effort networks in Chapter 7[on-line].
The lower layer (the computer system) is providing a best effort implementation. A
higher layer (the human user) supervises and, when necessary, retries. For example, sup
pose that the human user adds an appointment to the calendar but just as he or she clicks
“save” the system crashes. The user doesn’t know whether or not the addition actually
succeeded, so when the system comes up again the first thing to do is open up the calen
dar to find out what happened.

Processor, memory, and operating system fault tolerance model.

This part of the model just specifies more precisely the intended fail-fast properties of
the hardware and operating system:

• 	error-free operation: The processor, memory, and operating system all follow
their specifications.

• 	 detected error: Something fails in the hardware or operating system. The system
is fail-fast: the hardware or operating system detects the failure and restarts from
a clean slate before initiating any further PUTs to the disk.

• 	untolerated error: Something fails in the hardware or operating system. The
processor muddles along and PUTs corrupted data to the disk before detecting the
failure.

Saltzer & Kaashoek Ch. 9, p. 22	 June 24, 2009 12:26 am

9.2 All-or-Nothing Atomicity I: Concepts 9–23

The primary goal of the processor/memory/operating-system part of the model is to
detect failures and stop running before any corrupted data is written to the disk storage
system. The importance of detecting failure before the next disk write lies in error con
tainment: if the goal is met, the designer can assume that the only values potentially in
error must be in processor registers and volatile memory, and the data on the disk should
be safe, with the exception described in Section 8.5.4.2: if there was a PUT to the disk in
progress at the time of the crash, the failing system may have corrupted the disk buffer
in volatile memory, and consequently corrupted the disk sector that was being written.

The recovery procedure can thus depend on the disk storage system to contain only
uncorrupted information, or at most one corrupted disk sector. In fact, after restart the
disk will contain the only information. “Restarts from a clean slate” means that the sys
tem discards all state held in volatile memory. This step brings the system to the same
state as if a power failure had occurred, so a single recovery procedure will be able to han
dle both system crashes and power failures. Discarding volatile memory also means that
all currently active threads vanish, so everything that was going on comes to an abrupt
halt and will have to be restarted.

Disk storage system fault tolerance model.

Implementing all-or-nothing atomicity involves some steps that resemble the decay
masking of MORE_DURABLE_PUT/GET in Chapter 8[on-line]—in particular, the algorithm
will write multiple copies of data. To clarify how the all-or-nothing mechanism works,
we temporarily back up to CAREFUL_PUT/GET (see Section 8.5.4.5), which masks soft disk
errors but not hard disk errors or disk decay. To simplify further, we pretend for the
moment that a disk never decays and that it has no hard errors. (Since this perfect-disk
assumption is obviously unrealistic, we will reverse it in Section 9.7, which describes an
algorithm for all-or-nothing atomicity despite disk decay and hard errors.)

With the perfect-disk assumption, only one thing can go wrong: a system crash at
just the wrong time. The fault tolerance model for this simplified careful disk system
then becomes:

• 	 error-free operation: CAREFUL_GET returns the result of the most recent call to
CAREFUL_PUT at sector_number on track, with status = OK.

• 	 detectable error: The operating system crashes during a CAREFUL_PUT and corrupts
the disk buffer in volatile storage, and CAREFUL_PUT writes corrupted data on one
sector of the disk.

We can classify the error as “detectable” if we assume that the application has
included with the data an end-to-end checksum, calculated before calling CAREFUL_PUT

and thus before the system crash could have corrupted the data.
The change in this revision of the careful storage layer is that when a system crash

occurs, one sector on the disk may be corrupted, but the client of the interface is confi
dent that (1) that sector is the only one that may be corrupted and (2) if it has been
corrupted, any later reader of that sector will detect the problem. Between the processor
model and the storage system model, all anticipated failures now lead to the same situa-

Saltzer & Kaashoek Ch. 9, p. 23	 June 24, 2009 12:26 am

9–24 CHAPTER 9 Atomicity: All-or-Nothing and Before-or-After

FIGURE 9.6

1 procedure ALMOST_ALL_OR_NOTHING_PUT (data, all_or_nothing_sector)
2 CAREFUL_PUT (data, all_or_nothing_sector.S1)
3 CAREFUL_PUT (data, all_or_nothing_sector.S2) // Commit point.
4 CAREFUL_PUT (data, all_or_nothing_sector.S3)

5 procedure ALL_OR_NOTHING_GET (reference data, all_or_nothing_sector)
6 CAREFUL_GET (data1, all_or_nothing_sector.S1)
7 CAREFUL_GET (data2, all_or_nothing_sector.S2)
8 CAREFUL_GET (data3, all_or_nothing_sector.S3)
9 if data1 = data2 then data ← data1 // Return new value.
10 else data ← data3 // Return old value.

Algorithms for ALMOST_ALL_OR_NOTHING_PUT and ALL_OR_NOTHING_GET.

tion: the system detects the failure, resets all processor registers and volatile memory,
forgets all active threads, and restarts. No more than one disk sector is corrupted.

Our problem is now reduced to providing the all-or-nothing property: the goal is to
create all-or-nothing disk storage, which guarantees either to change the data on a sector
completely and correctly or else appear to future readers not to have touched it at all.
Here is one simple, but somewhat inefficient, scheme that makes use of virtualization:
assign, for each data sector that is to have the all-or-nothing property, three physical disk
sectors, identified as S1, S2, and S3. The three physical sectors taken together are a vir
tual “all-or-nothing sector”. At each place in the system where this disk sector was
previously used, replace it with the all-or-nothing sector, identified by the triple {S1, S2,
S3}. We start with an almost correct all-or-nothing implementation named
ALMOST_ALL_OR_NOTHING_PUT, find a bug in it, and then fix the bug, finally creating a cor
rect ALL_OR_NOTHING_PUT.

When asked to write data, ALMOST_ALL_OR_NOTHING_PUT writes it three times, on S1, S2,
and S3, in that order, each time waiting until the previous write finishes, so that if the
system crashes only one of the three sectors will be affected. To read data,
ALL_OR_NOTHING_GET reads all three sectors and compares their contents. If the contents of
S1 and S2 are identical, ALL_OR_NOTHING_GET returns that value as the value of the all-or
nothing sector. If S1 and S2 differ, ALL_OR_NOTHING_GET returns the contents of S3 as the
value of the all-or-nothing sector. Figure 9.6 shows this almost correct pseudocode.

Let’s explore how this implementation behaves on a system crash. Suppose that at
some previous time a record has been correctly stored in an all-or-nothing sector (in
other words, all three copies are identical), and someone now updates it by calling
ALL_OR_NOTHING_PUT. The goal is that even if a failure occurs in the middle of the update,
a later reader can always be ensured of getting some complete, consistent version of the
record by invoking ALL_OR_NOTHING_GET.

Suppose that ALMOST_ALL_OR_NOTHING_PUT were interrupted by a system crash some
time before it finishes writing sector S2, and thus corrupts either S1 or S2. In that case,

Saltzer & Kaashoek Ch. 9, p. 24 June 24, 2009 12:26 am

9.2 All-or-Nothing Atomicity I: Concepts 9–25

FIGURE 9.7

1 procedure ALL_OR_NOTHING_PUT (data, all_or_nothing_sector)
2 CHECK_AND_REPAIR (all_or_nothing_sector)
3 ALMOST_ALL_OR_NOTHING_PUT (data, all_or_nothing_sector)

4 procedure CHECK_AND_REPAIR (all_or_nothing_sector) // Ensure copies match.
5 CAREFUL_GET (data1, all_or_nothing_sector.S1)
6 CAREFUL_GET (data2, all_or_nothing_sector.S2)
7 CAREFUL_GET (data3, all_or_nothing_sector.S3)
8 if (data1 = data2) and (data2 = data3) return // State 1 or 7, no repair
9 if (data1 = data2)
10 CAREFUL_PUT (data1, all_or_nothing_sector.S3) return // State 5 or 6.
11 if (data2 = data3)
12 CAREFUL_PUT (data2, all_or_nothing_sector.S1) return // State 2 or 3.
13 CAREFUL_PUT (data1, all_or_nothing_sector.S2) // State 4, go to state 5
14 CAREFUL_PUT (data1, all_or_nothing_sector.S3) // State 5, go to state 7

Algorithms for ALL_OR_NOTHING_PUT and CHECK_AND_REPAIR.

when ALL_OR_NOTHING_GET reads sectors S1 and S2, they will have different values, and it
is not clear which one to trust. Because the system is fail-fast, sector S3 would not yet
have been touched by ALMOST_ALL_OR_NOTHING_PUT, so it still contains the previous value.
Returning the value found in S3 thus has the desired effect of ALMOST_ALL_OR_NOTHING_PUT

having done nothing.
Now, suppose that ALMOST_ALL_OR_NOTHING_PUT were interrupted by a system crash

some time after successfully writing sector S2. In that case, the crash may have corrupted
S3, but S1 and S2 both contain the newly updated value. ALL_OR_NOTHING_GET returns the
value of S1, thus providing the desired effect of ALMOST_ALL_OR_NOTHING_PUT having com
pleted its job.

So what’s wrong with this design? ALMOST_ALL_OR_NOTHING_PUT assumes that all three
copies are identical when it starts. But a previous failure can violate that assumption.
Suppose that ALMOST_ALL_OR_NOTHING_PUT is interrupted while writing S3. The next
thread to call ALL_OR_NOTHING_GET finds data1 = data2, so it uses data1, as expected. The
new thread then calls ALMOST_ALL_OR_NOTHING_PUT, but is interrupted while writing S2.
Now, S1 doesn't equal S2, so the next call to ALMOST_ALL_OR_NOTHING_PUT returns the
damaged S3.
The fix for this bug is for ALL_OR_NOTHING_PUT to guarantee that the three sectors be iden
tical before updating. It can provide this guarantee by invoking a procedure named
CHECK_AND_REPAIR as in Figure 9.7. CHECK_AND_REPAIR simply compares the three copies
and, if they are not identical, it forces them to be identical. To see how this works, assume
that someone calls ALL_OR_NOTHING_PUT at a time when all three of the copies do contain
identical values, which we designate as “old”. Because ALL_OR_NOTHING_PUT writes “new”

Saltzer & Kaashoek Ch. 9, p. 25 June 24, 2009 12:26 am

9–26 CHAPTER 9 Atomicity: All-or-Nothing and Before-or-After

values into S1, S2, and S3 one at a time and in order, even if there is a crash, at the next
call to ALL_OR_NOTHING_PUT there are only seven possible data states for CHECK_AND_REPAIR

to consider:

data state: 1 2 3 4 5 6 7

sector S1 old bad new new new new new
sector S2 old old old bad new new new
sector S3 old old old old old bad new

The way to read this table is as follows: if all three sectors S1, S2, and S3 contain the
“old” value, the data is in state 1. Now, if CHECK_AND_REPAIR discovers that all three copies
are identical (line 8 in Figure 9.7), the data is in state 1 or state 7 so CHECK_AND_REPAIR

simply returns. Failing that test, if the copies in sectors S1 and S2 are identical (line 9),
the data must be in state 5 or state 6, so CHECK_AND_REPAIR forces sector S3 to match and
returns (line 10). If the copies in sectors S2 and S3 are identical the data must be in state
2 or state 3 (line 11), so CHECK_AND_REPAIR forces sector S1 to match and returns (line 12).
The only remaining possibility is that the data is in state 4, in which case sector S2 is
surely bad, but sector S1 contains a new value and sector S3 contains an old one. The
choice of which to use is arbitrary; as shown the procedure copies the new value in sector
S1 to both sectors S2 and S3.

What if a failure occurs while running CHECK_AND_REPAIR? That procedure systemati
cally drives the state either forward from state 4 toward state 7, or backward from state
3 toward state 1. If CHECK_AND_REPAIR is itself interrupted by another system crash, rerun
ning it will continue from the point at which the previous attempt left off.

We can make several observations about the algorithm implemented by
ALL_OR_NOTHING_GET and ALL_OR_NOTHING_PUT:

1. 	This all-or-nothing atomicity algorithm assumes that only one thread at a time
tries to execute either ALL_OR_NOTHING_GET or ALL_OR_NOTHING_PUT. This algorithm
implements all-or-nothing atomicity but not before-or-after atomicity.

2. 	CHECK_AND_REPAIR is idempotent. That means that a thread can start the procedure,
execute any number of its steps, be interrupted by a crash, and go back to the
beginning again any number of times with the same ultimate result, as far as a later
call to ALL_OR_NOTHING_GET is concerned.

3. 	The completion of the CAREFUL_PUT on line 3 of ALMOST_ALL_OR_NOTHING_PUT,
marked “commit point,” exposes the new data to future ALL_OR_NOTHING_GET

actions. Until that step begins execution, a call to ALL_OR_NOTHING_GET sees the old
data. After line 3 completes, a call to ALL_OR_NOTHING_GET sees the new data.

4. 	Although the algorithm writes three replicas of the data, the primary reason for
the replicas is not to provide durability as described in Section 8.5. Instead, the
reason for writing three replicas, one at a time and in a particular order, is to ensure
observance at all times and under all failure scenarios of the golden rule of atomicity,
which is the subject of the next section.

Saltzer & Kaashoek Ch. 9, p. 26	 June 24, 2009 12:26 am

9.2 All-or-Nothing Atomicity I: Concepts 9–27

There are several ways of implementing all-or-nothing disk sectors. Near the end of
Chapter 8[on-line] we introduced a fault tolerance model for decay events that did not
mask system crashes, and applied the technique known as RAID to mask decay to pro
duce durable storage. Here we started with a slightly different fault tolerance model that
omits decay, and we devised techniques to mask system crashes and produce all-or-noth
ing storage. What we really should do is start with a fault tolerance model that considers
both system crashes and decay, and devise storage that is both all-or-nothing and dura
ble. Such a model, devised by Xerox Corporation researchers Butler Lampson and
Howard Sturgis, is the subject of Section 9.7, together with the more elaborate recovery
algorithms it requires. That model has the additional feature that it needs only two phys
ical sectors for each all-or-nothing sector.

9.2.2 Systematic Atomicity: Commit and the Golden Rule

The example of ALL_OR_NOTHING_PUT and ALL_OR_NOTHING_GET demonstrates an interesting
special case of all-or-nothing atomicity, but it offers little guidance on how to systemat
ically create a more general all-or-nothing action. From the example, our calendar
program now has a tool that allows writing individual sectors with the all-or-nothing
property, but that is not the same as safely adding an event to a calendar, since adding
an event probably requires rearranging a data structure, which in turn may involve writ
ing more than one disk sector. We could do a series of ALL_OR_NOTHING_PUTs to the several
sectors, to ensure that each sector is itself written in an all-or-nothing fashion, but a crash
that occurs after writing one and before writing the next would leave the overall calendar
addition in a partly-done state. To make the entire calendar addition action all-or-noth
ing we need a generalization.

Ideally, one might like to be able to take any arbitrary sequence of instructions in a
program, surround that sequence with some sort of begin and end statements as in Fig
ure 9.8, and expect that the language compilers and operating system will perform some
magic that makes the surrounded sequence into an all-or-nothing action. Unfortunately,
no one knows how to do that. But we can come close, if the programmer is willing to
make a modest concession to the requirements of all-or-nothing atomicity. This conces
sion is expressed in the form of a discipline on the constituent steps of the all-or-nothing
action.

The discipline starts by identifying some single step of the sequence as the commit
point. The all-or-nothing action is thus divided into two phases, a pre-commit phase and
a post-commit phase, as suggested by Figure 9.9. During the pre-commit phase, the disci
plining rule of design is that no matter what happens, it must be possible to back out of
this all-or-nothing action in a way that leaves no trace. During the post-commit phase
the disciplining rule of design is that no matter what happens, the action must run to the
end successfully. Thus an all-or-nothing action can have only two outcomes. If the all-
or-nothing action starts and then, without reaching the commit point, backs out, we say
that it aborts. If the all-or-nothing action passes the commit point, we say that it commits.

Saltzer & Kaashoek Ch. 9, p. 27 June 24, 2009 12:26 am

9–28 CHAPTER 9 Atomicity: All-or-Nothing and Before-or-After

FIGURE 9.8

begin all-or-nothing action

___ arbitrary sequence of
___ lower-layer actions

end all-or-nothing action

}

Imaginary semantics for painless programming of all-or-nothing actions.

We can make several observations about the restrictions of the pre-commit phase.
The pre-commit phase must identify all the resources needed to complete the all-or
nothing action, and establish their availability. The names of data should be bound, per
missions should be checked, the pages to be read or written should be in memory,
removable media should be mounted, stack space must be allocated, etc. In other words,
all the steps needed to anticipate the severe run-to-the-end-without-faltering require
ment of the post-commit phase should be completed during the pre-commit phase. In
addition, the pre-commit phase must maintain the ability to abort at any instant. Any
changes that the pre-commit phase makes to the state of the system must be undoable in
case this all-or-nothing action aborts. Usually, this requirement means that shared

___ first step of all-or-nothing action

___ Pre-commit discipline: can back out,
___ leaving no trace

___ Commit point

___ Post-commit discipline: completion is inevitable

___ last step of all-or-nothing action

}
}

FIGURE 9.9

The commit point of an all-or-nothing action.

Saltzer & Kaashoek Ch. 9, p. 28 June 24, 2009 12:26 am

9.2 All-or-Nothing Atomicity I: Concepts 9–29

resources, once reserved, cannot be released until the commit point is passed. The reason
is that if an all-or-nothing action releases a shared resource, some other, concurrent
thread may capture that resource. If the resource is needed in order to undo some effect
of the all-or-nothing action, releasing the resource is tantamount to abandoning the abil
ity to abort. Finally, the reversibility requirement means that the all-or-nothing action
should not do anything externally visible, for example printing a check or firing a missile,
prior to the commit point. (It is possible, though more complicated, to be slightly less
restrictive. Sidebar 9.3 explores that possibility.)

In contrast, the post-commit phase can expose results, it can release reserved resources
that are no longer needed, and it can perform externally visible actions such as printing
a check, opening a cash drawer, or drilling a hole. But it cannot try to acquire additional
resources because an attempt to acquire might fail, and the post-commit phase is not per
mitted the luxury of failure. The post-commit phase must confine itself to finishing just
the activities that were planned during the pre-commit phase.

It might appear that if a system fails before the post-commit phase completes, all hope
is lost, so the only way to ensure all-or-nothing atomicity is to always make the commit
step the last step of the all-or-nothing action. Often, that is the simplest way to ensure
all-or-nothing atomicity, but the requirement is not actually that stringent. An impor
tant feature of the post-commit phase is that it is hidden inside the layer that implements
the all-or-nothing action, so a scheme that ensures that the post-commit phase completes
after a system failure is acceptable, so long as this delay is hidden from the invoking layer.
Some all-or-nothing atomicity schemes thus involve a guarantee that a cleanup proce
dure will be invoked following every system failure, or as a prelude to the next use of the
data, before anyone in a higher layer gets a chance to discover that anything went wrong.
This idea should sound familiar: the implementation of ALL_OR_NOTHING_PUT in Figure
9.7 used this approach, by always running the cleanup procedure named
CHECK_AND_REPAIR before updating the data.

A popular technique for achieving all-or-nothing atomicity is called the shadow copy.
It is used by text editors, compilers, calendar management programs, and other programs
that modify existing files, to ensure that following a system failure the user does not end
up with data that is damaged or that contains only some of the intended changes:

• 	 Pre-commit: Create a complete duplicate working copy of the file that is to be
modified. Then, make all changes to the working copy.

Sidebar 9.3: Cascaded aborts (Temporary) sweeping simplification. In this initial discussioin of
commit points, we are intentionally avoiding a more complex and harder-to-design possibility.
Some systems allow other, concurrent activities to see pending results, and they may even allow
externally visible actions before commit. Those systems must therefore be prepared to track
down and abort those concurrent activities (this tracking down is called cascaded abort) or
perform compensating external actions (e.g., send a letter requesting return of the check or
apologizing for the missile firing). The discussion of layers and multiple sites in Chapter 10[on
line] introduces a simple version of cascaded abort.

Saltzer & Kaashoek Ch. 9, p. 29	 June 24, 2009 12:26 am

9–30 CHAPTER 9 Atomicity: All-or-Nothing and Before-or-After

• 	 Commit point: Carefully exchange the working copy with the original. Typically
this step is bootstrapped, using a lower-layer RENAME entry point of the file system
that provides certain atomic-like guarantees such as the ones described for the
UNIX version of RENAME in Section 2.5.8.

• 	 Post-commit: Release the space that was occupied by the original.

The ALL_OR_NOTHING_PUT algorithm of Figure 9.7 can be seen as a particular example
of the shadow copy strategy, which itself is a particular example of the general pre-com
mit/post-commit discipline. The commit point occurs at the instant when the new value
of S2 is successfully written to the disk. During the pre-commit phase, while
ALL_OR_NOTHING_PUT is checking over the three sectors and writing the shadow copy S1, a
crash will leave no trace of that activity (that is, no trace that can be discovered by a later
caller of ALL_OR_NOTHING_GET). The post-commit phase of ALL_OR_NOTHING_PUT consists of
writing S3.

From these examples we can extract an important design principle:

The golden rule of atomicity

Never modify the only copy!

In order for a composite action to be all-or-nothing, there must be some way of reversing
the effect of each of its pre-commit phase component actions, so that if the action does
not commit it is possible to back out. As we continue to explore implementations of all-
or-nothing atomicity, we will notice that correct implementations always reduce at the
end to making a shadow copy. The reason is that structure ensures that the implemen
tation follows the golden rule.

9.2.3 Systematic All-or-Nothing Atomicity: Version Histories

This section develops a scheme to provide all-or-nothing atomicity in the general case of
a program that modifies arbitrary data structures. It will be easy to see why the scheme
is correct, but the mechanics can interfere with performance. Section 9.3 of this chapter
then introduces a variation on the scheme that requires more thought to see why it is cor
rect, but that allows higher-performance implementations. As before, we concentrate for
the moment on all-or-nothing atomicity. While some aspects of before-or-after atomic
ity will also emerge, we leave a systematic treatment of that topic for discussion in
Sections 9.4 and 9.5 of this chapter. Thus the model to keep in mind in this section is
that only a single thread is running. If the system crashes, after a restart the original
thread is gone—recall from Chapter 8[on-line] the sweeping simplification that threads
are included in the volatile state that is lost on a crash and only durable state survives.
After the crash, a new, different thread comes along and attempts to look at the data. The
goal is that the new thread should always find that the all-or-nothing action that was in
progress at the time of the crash either never started or completed successfully.

Saltzer & Kaashoek Ch. 9, p. 30	 June 24, 2009 12:26 am

9.2 All-or-Nothing Atomicity I: Concepts 9–31

In looking at the general case, a fundamental difficulty emerges: random-access mem
ory and disk usually appear to the programmer as a set of named, shared, and rewritable
storage cells, called cell storage. Cell storage has semantics that are actually quite hard to
make all-or-nothing because the act of storing destroys old data, thus potentially violat
ing the golden rule of atomicity. If the all-or-nothing action later aborts, the old value is
irretrievably gone; at best it can only be reconstructed from information kept elsewhere.
In addition, storing data reveals it to the view of later threads, whether or not the all-or
nothing action that stored the value reached its commit point. If the all-or-nothing
action happens to have exactly one output value, then writing that value into cell storage
can be the mechanism of committing, and there is no problem. But if the result is sup
posed to consist of several output values, all of which should be exposed simultaneously,
it is harder to see how to construct the all-or-nothing action. Once the first output value
is stored, the computation of the remaining outputs has to be successful; there is no going
back. If the system fails and we have not been careful, a later thread may see some old
and some new values.

These limitations of cell storage did not plague the shopkeepers of Padua, who in the
14th century invented double-entry bookkeeping. Their storage medium was leaves of
paper in bound books and they made new entries with quill pens. They never erased or
even crossed out entries that were in error; when they made a mistake they made another
entry that reversed the mistake, thus leaving a complete history of their actions, errors,
and corrections in the book. It wasn’t until the 1950’s, when programmers began to
automate bookkeeping systems, that the notion of overwriting data emerged. Up until
that time, if a bookkeeper collapsed and died while making an entry, it was always pos
sible for someone else to seamlessly take over the books. This observation about the
robustness of paper systems suggests that there is a form of the golden rule of atomicity
that might allow one to be systematic: never erase anything.

Examining the shadow copy technique used by the text editor provides a second use
ful idea. The essence of the mechanism that allows a text editor to make several changes
to a file, yet not reveal any of the changes until it is ready, is this: the only way another
prospective reader of a file can reach it is by name. Until commit time the editor works
on a copy of the file that is either not yet named or has a unique name not known outside
the thread, so the modified copy is effectively invisible. Renaming the new version is the
step that makes the entire set of updates simultaneously visible to later readers.

These two observations suggest that all-or-nothing actions would be better served by
a model of storage that behaves differently from cell storage: instead of a model in which
a store operation overwrites old data, we instead create a new, tentative version of the
data, such that the tentative version remains invisible to any reader outside this all-or
nothing action until the action commits. We can provide such semantics, even though
we start with traditional cell memory, by interposing a layer between the cell storage and
the program that reads and writes data. This layer implements what is known as journal
storage. The basic idea of journal storage is straightforward: we associate with every
named variable not a single cell, but a list of cells in non-volatile storage; the values in
the list represent the history of the variable. Figure 9.10 illustrates. Whenever any action

Saltzer & Kaashoek Ch. 9, p. 31 June 24, 2009 12:26 am

9–32 CHAPTER 9 Atomicity: All-or-Nothing and Before-or-After

History of earlier versions
Tentative
next version

1614112295207Variable A:

Current version

FIGURE 9.10

Version history of a variable in journal storage.

proposes to write a new value into the variable, the journal storage manager appends the
prospective new value to the end of the list. Clearly this approach, being history-preserv
ing, offers some hope of being helpful because if an all-or-nothing action aborts, one can
imagine a systematic way to locate and discard all of the new versions it wrote. Moreover,
we can tell the journal storage manager to expect to receive tentative values, but to ignore
them unless the all-or-nothing action that created them commits. The basic mechanism
to accomplish such an expectation is quite simple; the journal storage manager should
make a note, next to each new version, of the identity of the all-or-nothing action that
created it. Then, at any later time, it can discover the status of the tentative version by
inquiring whether or not the all-or-nothing action ever committed.

Figure 9.11 illustrates the overall structure of such a journal storage system, imple
mented as a layer that hides a cell storage system. (To reduce clutter, this journal storage
system omits calls to create new and delete old variables.) In this particular model, we
assign to the journal storage manager most of the job of providing tools for programming
all-or-nothing actions. Thus the implementer of a prospective all-or-nothing action
should begin that action by invoking the journal storage manager entry NEW_ACTION, and
later complete the action by invoking either COMMIT or ABORT. If, in addition, actions per
form all reads and writes of data by invoking the journal storage manager’s
READ_CURRENT_VALUE and WRITE_NEW_VALUE entries, our hope is that the result will auto
matically be all-or-nothing with no further concern of the implementer.

How could this automatic all-or-nothing atomicity work? The first step is that the
journal storage manager, when called at NEW_ACTION, should assign a nonce identifier to
the prospective all-or-nothing action, and create, in non-volatile cell storage, a record of
this new identifier and the state of the new all-or-nothing action. This record is called an
outcome record; it begins its existence in the state PENDING; depending on the outcome it
should eventually move to one of the states COMMITTED or ABORTED, as suggested by Figure
9.12. No other state transitions are possible, except to discard the outcome record once

Saltzer & Kaashoek Ch. 9, p. 32 June 24, 2009 12:26 am

9.2 All-or-Nothing Atomicity I: Concepts 9–33

NEW_ACTION

READ_CURRENT_VALUE

WRITE_NEW_VALUE

COMMIT

ABORT

All-or-nothing Journal Storage System

Cell Storage
System

– catalogs

– versions

– outcome
records

Journal

READ

WRITE

ALLOCATE

DEALLOCATE

Storage
Manager

FIGURE 9.11

Interface to and internal organization of an all-or-nothing storage system based on version his
tories and journal storage.

new all-or-nothing
action is
created

aborted

all-or-nothing

all-or-nothing
action
commits committed

pending
non-existent

discarded

action outcome record
aborts state no longer

of any interest

FIGURE 9.12

The allowed state transitions of an outcome record.

Saltzer & Kaashoek Ch. 9, p. 33 June 24, 2009 12:26 am

9–34 CHAPTER 9 Atomicity: All-or-Nothing and Before-or-After

FIGURE 9.13

1 procedure NEW_ACTION ()
2 id ← NEW_OUTCOME_RECORD ()
3 id.outcome_record.state ← PENDING

4 return id

5 procedure COMMIT (reference id)
6 id.outcome_record.state ← COMMITTED

7 procedure ABORT (reference id)
8 id.outcome_record.state ← ABORTED

The procedures NEW_ACTION, COMMIT, and ABORT.

there is no further interest in its state. Figure 9.13 illustrates implementations of the three
procedures NEW_ACTION, COMMIT, and ABORT.

When an all-or-nothing action calls the journal storage manager to write a new ver
sion of some data object, that action supplies the identifier of the data object, a tentative
new value for the new version, and the identifier of the all-or-nothing action. The journal
storage manager calls on the lower-level storage management system to allocate in non
volatile cell storage enough space to contain the new version; it places in the newly allo
cated cell storage the new data value and the identifier of the all-or-nothing action. Thus
the journal storage manager creates a version history as illustrated in Figure 9.14. Now,

7

03

outcome
records

Object A

pending1794:aborted1423:1101: committed

1101 1423 1794all-or-nothing
action id:

751524value:

FIGURE 9.14

Portion of a version history, with outcome records. Some thread has recently called
WRITE_NEW_VALUE specifying data_id = A, new_value = 75, and client_id = 1794. A caller to
READ_CURRENT_VALUE will read the value 24 for A.

Saltzer & Kaashoek Ch. 9, p. 34 June 24, 2009 12:26 am

9.2 All-or-Nothing Atomicity I: Concepts 9–35

FIGURE 9.15

1 procedure READ_CURRENT_VALUE (data_id, caller_id)
2 starting at end of data_id repeat until beginning
3 v ← previous version of data_id // Get next older version
4 a ← v.action_id // Identify the action a that created it
5 s ← a.outcome_record.state // Check action a’s outcome record
6 if s = COMMITTED then
7 return v.value
8 else skip v // Continue backward search
9 signal (“Tried to read an uninitialized variable!”)

10 procedure WRITE_NEW_VALUE (reference data_id, new_value, caller_id)
11 if caller_id.outcome_record.state = PENDING

12 append new version v to data_id
13 v.value ← new_value
14 v.action_id ← caller_id

else signal (“Tried to write outside of an all-or-nothing action!”)

Algorithms followed by READ_CURRENT_VALUE and WRITE_NEW_VALUE. The parameter caller_id is
the action identifier returned by NEW_ACTION. In this version, only WRITE_NEW_VALUE uses
caller_id. Later, READ_CURRENT_VALUE will also use it.

when someone proposes to read a data value by calling READ_CURRENT_VALUE, the journal
storage manager can review the version history, starting with the latest version and return
the value in the most recent committed version. By inspecting the outcome records, the
journal storage manager can ignore those versions that were written by all-or-nothing
actions that aborted or that never committed.

The procedures READ_CURRENT_VALUE and WRITE_NEW_VALUE thus follow the algorithms
of Figure 9.15. The important property of this pair of algorithms is that if the current
all-or-nothing action is somehow derailed before it reaches its call to COMMIT, the new ver
sion it has created is invisible to invokers of READ_CURRENT_VALUE. (They are also invisible
to the all-or-nothing action that wrote them. Since it is sometimes convenient for an all-
or-nothing action to read something that it has tentatively written, a different procedure,
named READ_MY_PENDING_VALUE, identical to READ_CURRENT_VALUE except for a different test
on line 6, could do that.) Moreover if, for example, all-or-nothing action 99 crashes
while partway through changing the values of nineteen different data objects, all nine
teen changes would be invisible to later invokers of READ_CURRENT_VALUE. If all-or-nothing
action 99 does reach its call to COMMIT, that call commits the entire set of changes simul
taneously and atomically, at the instant that it changes the outcome record from PENDING

to COMMITTED. Pending versions would also be invisible to any concurrent action that
reads data with READ_CURRENT_VALUE, a feature that will prove useful when we introduce
concurrent threads and discuss before-or-after atomicity, but for the moment our only

Saltzer & Kaashoek Ch. 9, p. 35 June 24, 2009 12:26 am

9–36 CHAPTER 9 Atomicity: All-or-Nothing and Before-or-After

FIGURE 9.16

1 procedure TRANSFER (reference debit_account, reference credit_account,
amount)

2 my_id ← NEW_ACTION ()
3 xvalue ← READ_CURRENT_VALUE (debit_account, my_id)
4 xvalue ← xvalue - amount
5 WRITE_NEW_VALUE (debit_account, xvalue, my_id)
6 yvalue ← READ_CURRENT_VALUE (credit_account, my_id)
7 yvalue ← yvalue + amount
8 WRITE_NEW_VALUE (credit_account, yvalue, my_id)
9 if xvalue > 0 then
10 COMMIT (my_id)
11 else
12 ABORT (my_id)
13 signal(“Negative transfers are not allowed.”)

An all-or-nothing TRANSFER procedure, based on journal storage. (This program assumes that
it is the only running thread. Making the transfer procedure a before-or-after action because
other threads might be updating the same accounts concurrently requires additional mecha
nism that is discussed later in this chapter.)

concern is that a system crash may prevent the current thread from committing or abort
ing, and we want to make sure that a later thread doesn’t encounter partial results. As in
the case of the calendar manager of Section 9.2.1, we assume that when a crash occurs,
any all-or-nothing action that was in progress at the time was being supervised by some
outside agent who realizes that a crash has occurred, uses READ_CURRENT_VALUE to find out
what happened and if necessary initiates a replacement all-or-nothing action.

Figure 9.16 shows the TRANSFER procedure of Section 9.1.5 reprogrammed as an all-
or-nothing (but not, for the moment, before-or-after) action using the version history
mechanism. This implementation of TRANSFER is more elaborate than the earlier one—it
tests to see whether or not the account to be debited has enough funds to cover the trans
fer and if not it aborts the action. The order of steps in the transfer procedure is
remarkably unconstrained by any consideration other than calculating the correct
answer. The reading of credit_account, for example, could casually be moved to any
point between NEW_ACTION and the place where yvalue is recalculated. We conclude that
the journal storage system has made the pre-commit discipline much less onerous than
we might have expected.

There is still one loose end: it is essential that updates to a version history and changes
to an outcome record be all-or-nothing. That is, if the system fails while the thread is
inside WRITE_NEW_VALUE, adjusting structures to append a new version, or inside COMMIT

while updating the outcome record, the cell being written must not be muddled; it must
either stay as it was before the crash or change to the intended new value. The solution
is to design all modifications to the internal structures of journal storage so that they can

Saltzer & Kaashoek Ch. 9, p. 36 June 24, 2009 12:26 am

9.2 All-or-Nothing Atomicity I: Concepts 9–37

be done by overwriting a single cell. For example, suppose that the name of a variable
that has a version history refers to a cell that contains the address of the newest version,
and that versions are linked from the newest version backwards, by address references.
Adding a version consists of allocating space for a new version, reading the current
address of the prior version, writing that address in the backward link field of the new
version, and then updating the descriptor with the address of the new version. That last
update can be done by overwriting a single cell. Similarly, updating an outcome record
to change it from PENDING to COMMITTED can be done by overwriting a single cell.

As a first bootstrapping step, we have reduced the general problem of creating all-or
nothing actions to the specific problem of doing an all-or-nothing overwrite of one cell.
As the remaining bootstrapping step, recall that we already know two ways to do a single-
cell all-or-nothing overwrite: apply the ALL_OR_NOTHING_PUT procedure of Figure 9.7. (If
there is concurrency, updates to the internal structures of the version history also need
before-or-after atomicity. Section 9.4 will explore methods of providing it.)

9.2.4 How Version Histories are Used

The careful reader will note two possibly puzzling things about the version history
scheme just described. Both will become less puzzling when we discuss concurrency and
before-or-after atomicity in Section 9.4 of this chapter:

1. 	Because READ_CURRENT_VALUE skips over any version belonging to another all-or
nothing action whose OUTCOME record is not COMMITTED, it isn’t really necessary to
change the OUTCOME record when an all-or-nothing action aborts; the record could
just remain in the PENDING state indefinitely. However, when we introduce
concurrency, we will find that a pending action may prevent other threads from
reading variables for which the pending action created a new version, so it will
become important to distinguish aborted actions from those that really are still
pending.

2. 	As we have defined READ_CURRENT_VALUE, versions older than the most recent
committed version are inaccessible and they might just as well be discarded.
Discarding could be accomplished either as an additional step in the journal
storage manager, or as part of a separate garbage collection activity. Alternatively,
those older versions may be useful as an historical record, known as an archive,
with the addition of timestamps on commit records and procedures that can locate
and return old values created at specified times in the past. For this reason, a
version history system is sometimes called a temporal database or is said to provide
time domain addressing. The banking industry abounds in requirements that make
use of history information, such as reporting a consistent sum of balances in all
bank accounts, paying interest on the fifteenth on balances as of the first of the
month, or calculating the average balance last month. Another reason for not
discarding old versions immediately will emerge when we discuss concurrency and

Saltzer & Kaashoek Ch. 9, p. 37	 June 24, 2009 12:26 am

9–38 CHAPTER 9 Atomicity: All-or-Nothing and Before-or-After

before-or-after atomicity: concurrent threads may, for correctness, need to read old
versions even after new versions have been created and committed.

Direct implementation of a version history raises concerns about performance: rather
than simply reading a named storage cell, one must instead make at least one indirect
reference through a descriptor that locates the storage cell containing the current version.
If the cell storage device is on a magnetic disk, this extra reference is a potential bottle
neck, though it can be alleviated with a cache. A bottleneck that is harder to alleviate
occurs on updates. Whenever an application writes a new value, the journal storage layer
must allocate space in unused cell storage, write the new version, and update the version
history descriptor so that future readers can find the new version. Several disk writes are
likely to be required. These extra disk writes may be hidden inside the journal storage
layer and with added cleverness may be delayed until commit and batched, but they still
have a cost. When storage access delays are the performance bottleneck, extra accesses
slow things down.

In consequence, version histories are used primarily in low-performance applications.
One common example is found in revision management systems used to coordinate
teams doing program development. A programmer “checks out” a group of files, makes
changes, and then “checks in” the result. The check-out and check-in operations are all-
or-nothing and check-in makes each changed file the latest version in a complete history
of that file, in case a problem is discovered later. (The check-in operation also verifies that
no one else changed the files while they were checked out, which catches some, but not
all, coordination errors.) A second example is that some interactive applications such as
word processors or image editing systems provide a “deep undo” feature, which allows a
user who decides that his or her recent editing is misguided to step backwards to reach
an earlier, satisfactory state. A third example appears in file systems that automatically
create a new version every time any application opens an existing file for writing; when
the application closes the file, the file system tags a number suffix to the name of the pre
vious version of the file and moves the original name to the new version. These interfaces
employ version histories because users find them easy to understand and they provide all-
or-nothing atomicity in the face of both system failures and user mistakes. Most such
applications also provide an archive that is useful for reference and that allows going back
to a known good version.

Applications requiring high performance are a different story. They, too, require all-
or-nothing atomicity, but they usually achieve it by applying a specialized technique
called a log. Logs are our next topic.

9.3 All-or-Nothing Atomicity II: Pragmatics
Database management applications such as airline reservation systems or banking sys
tems usually require high performance as well as all-or-nothing atomicity, so their
designers use streamlined atomicity techniques. The foremost of these techniques
sharply separates the reading and writing of data from the failure recovery mechanism.

Saltzer & Kaashoek Ch. 9, p. 38 June 24, 2009 12:26 am

9.3 All-or-Nothing Atomicity II: Pragmatics 9–39

The idea is to minimize the number of storage accesses required for the most common
activities (application reads and updates). The trade-off is that the number of storage
accesses for rarely-performed activities (failure recovery, which one hopes is actually exer
cised only occasionally, if at all) may not be minimal. The technique is called logging.
Logging is also used for purposes other than atomicity, several of which Sidebar 9.4
describes.

9.3.1 Atomicity Logs

The basic idea behind atomicity logging is to combine the all-or-nothing atomicity of
journal storage with the speed of cell storage, by having the application twice record every
change to data. The application first logs the change in journal storage, and then it installs
the change in cell storage*. One might think that writing data twice must be more expen
sive than writing it just once into a version history, but the separation permits specialized
optimizations that can make the overall system faster.

The first recording, to journal storage, is optimized for fast writing by creating a sin
gle, interleaved version history of all variables, known as a log. The information
describing each data update forms a record that the application appends to the end of the
log. Since there is only one log, a single pointer to the end of the log is all that is needed
to find the place to append the record of a change of any variable in the system. If the
log medium is magnetic disk, and the disk is used only for logging, and the disk storage
management system allocates sectors contiguously, the disk seek arm will need to move
only when a disk cylinder is full, thus eliminating most seek delays. As we will see, recov
ery does involve scanning the log, which is expensive, but recovery should be a rare event.
Using a log is thus an example of following the hint to optimize for the common case.

The second recording, to cell storage, is optimized to make reading fast: the applica
tion installs by simply overwriting the previous cell storage record of that variable. The
record kept in cell storage can be thought of as a cache that, for reading, bypasses the
effort that would be otherwise be required to locate the latest version in the log. In addi
tion, by not reading from the log the logging disk’s seek arm can remain in position,
ready for the next update. The two steps, LOG and INSTALL, become a different implemen
tation of the WRITE_NEW_VALUE interface of Figure 9.11. Figure 9.17 illustrates this two-
step implementation.

The underlying idea is that the log is the authoritative record of the outcome of the
action. Cell storage is merely a reference copy; if it is lost, it can be reconstructed from
the log. The purpose of installing a copy in cell storage is to make both logging and read
ing faster. By recording data twice, we obtain high performance in writing, high
performance in reading, and all-or-nothing atomicity, all at the same time.

There are three common logging configurations, shown in Figure 9.18. In each of
these three configurations, the log resides in non-volatile storage. For the in-memory

* A hardware architect would say “…it graduates the change to cell storage”. This text, somewhat
arbitrarily, chooses to use the database management term “install” .

Saltzer & Kaashoek Ch. 9, p. 39 June 24, 2009 12:26 am

CHAPTER 9 Atomicity: All-or-Nothing and Before-or-After 9–40

Sidebar 9.4: The many uses of logs A log is an object whose primary usage method is to
append a new record. Log implementations normally provide procedures to read entries from
oldest to newest or in reverse order, but there is usually not any procedure for modifying
previous entries. Logs are used for several quite distinct purposes, and this range of purposes
sometimes gets confused in real-world designs and implementations. Here are some of the most
common uses for logs:

1. Atomicity log. If one logs the component actions of an all-or-nothing action, together with
sufficient before and after information, then a crash recovery procedure can undo (and thus
roll back the effects of) all-or-nothing actions that didn’t get a chance to complete, or finish
all-or-nothing actions that committed but that didn’t get a chance to record all of their
effects.

2. Archive log. If the log is kept indefinitely, it becomes a place where old values of data and the
sequence of actions taken by the system or its applications can be kept for review. There are
many uses for archive information: watching for failure patterns, reviewing the actions of
the system preceding and during a security breach, recovery from application-layer mistakes
(e.g., a clerk incorrectly deleted an account), historical study, fraud control, and compliance
with record-keeping requirements.

3. Performance log. Most mechanical storage media have much higher performance for
sequential access than for random access. Since logs are written sequentially, they are ideally
suited to such storage media. It is possible to take advantage of this match to the physical
properties of the media by structuring data to be written in the form of a log. When
combined with a cache that eliminates most disk reads, a performance log can provide a
significant speed-up. As will be seen in the accompanying text, an atomicity log is usually
also a performance log.

4. Durability log. If the log is stored on a non-volatile medium—say magnetic tape—that fails
in ways and at times that are independent from the failures of the cell storage medium—
which might be magnetic disk—then the copies of data in the log are replicas that can be
used as backup in case of damage to the copies of the data in cell storage. This kind of log
helps implement durable storage. Any log that uses a non-volatile medium, whether
intended for atomicity, archiving or performance, typically also helps support durability.

It is essential to have these various purposes—all-or-nothing atomicity, archive, performance,
and durable storage—distinct in one’s mind when examining or designing a log
implementation because they lead to different priorities among design trade-offs. When
archive is the goal, low cost of the storage medium is usually more important than quick access
because archive logs are large but, in practice, infrequently read. When durable storage is the
goal, it may be important to use storage media with different physical properties, so that failure
modes will be as independent as possible. When all-or-nothing atomicity or performance is the
purpose, minimizing mechanical movement of the storage device becomes a high priority.
Because of the competing objectives of different kinds of logs, as a general rule, it is usually a
wise move to implement separate, dedicated logs for different functions.

Saltzer & Kaashoek Ch. 9, p. 40 June 24, 2009 12:26 am

9.3 All-or-Nothing Atomicity II: Pragmatics 9–41

Journal Storage

WRITE_NEW_VALUE

Log

Cell

log

install

Storage

READ_CURRENT_VALUE

current
end of log

FIGURE 9.17

Logging for all-or-nothing atomicity. The application performs WRITE_NEW_VALUE by first
appending a record of the new value to the log in journal storage, and then installing the new
value in cell storage by overwriting. The application performs READ_CURRENT_VALUE by reading
just from cell storage.

Volatile storage Non-volatile storage

log
Application
program cell

storage
In-memory database:

log
Application
program cell

storage
Ordinary database:

Application
program

log
cell

storage
cacheHigh-performance

database:

FIGURE 9.18

Three common logging configurations. Arrows show data flow as the application reads, logs,
and installs data.

Saltzer & Kaashoek Ch. 9, p. 41 June 24, 2009 12:26 am

9–42 CHAPTER 9 Atomicity: All-or-Nothing and Before-or-After

database, cell storage resides entirely in some volatile storage medium. In the second
common configuration, cell storage resides in non-volatile storage along with the log.
Finally, high-performance database management systems usually blend the two preced
ing configurations by implementing a cache for cell storage in a volatile medium, and a
potentially independent multilevel memory management algorithm moves data between
the cache and non-volatile cell storage.

Recording everything twice adds one significant complication to all-or-nothing ato
micity because the system can crash between the time a change is logged and the time it
is installed. To maintain all-or-nothing atomicity, logging systems follow a protocol that
has two fundamental requirements. The first requirement is a constraint on the order of
logging and installing. The second requirement is to run an explicit recovery procedure
after every crash. (We saw a preview of the strategy of using a recovery procedure in Fig
ure 9.7, which used a recovery procedure named CHECK_AND_REPAIR.)

9.3.2 Logging Protocols

There are several kinds of atomicity logs that vary in the order in which things are done
and in the details of information logged. However, all of them involve the ordering con
straint implied by the numbering of the arrows in Figure 9.17. The constraint is a version
of the golden rule of atomicity (never modify the only copy), known as the write-ahead
log (WAL) protocol:

Write-ahead-log protocol

Log the update before installing it.

The reason is that logging appends but installing overwrites. If an application violates
this protocol by installing an update before logging it and then for some reason must
abort, or the system crashes, there is no systematic way to discover the installed update
and, if necessary, reverse it. The write-ahead-log protocol ensures that if a crash occurs,
a recovery procedure can, by consulting the log, systematically find all completed and
intended changes to cell storage and either restore those records to old values or set them
to new values, as appropriate to the circumstance.

The basic element of an atomicity log is the log record. Before an action that is to be
all-or-nothing installs a data value, it appends to the end of the log a new record of type
CHANGE containing, in the general case, three pieces of information (we will later see spe
cial cases that allow omitting item 2 or item 3):

1. 	The identity of the all-or-nothing action that is performing the update.

2. 	A component action that, if performed, installs the intended value in cell storage.
This component action is a kind of an insurance policy in case the system crashes.
If the all-or-nothing action commits, but then the system crashes before the action
has a chance to perform the install, the recovery procedure can perform the install

Saltzer & Kaashoek Ch. 9, p. 42	 June 24, 2009 12:26 am

9.3 All-or-Nothing Atomicity II: Pragmatics 9–43

on behalf of the action. Some systems call this component action the do action,
others the redo action. For mnemonic compatibility with item 3, this text calls it
the redo action.

3. 	A second component action that, if performed, reverses the effect on cell storage
of the planned install. This component action is known as the undo action because
if, after doing the install, the all-or-nothing action aborts or the system crashes, it
may be necessary for the recovery procedure to reverse the effect of (undo) the
install.

An application appends a log record by invoking the lower-layer procedure LOG, which
itself must be atomic. The LOG procedure is another example of bootstrapping: Starting
with, for example, the ALL_OR_NOTHING_PUT described earlier in this chapter, a log designer
creates a generic LOG procedure, and using the LOG procedure an application programmer
then can implement all-or-nothing atomicity for any properly designed composite
action.

As we saw in Figure 9.17, LOG and INSTALL are the logging implementation of the
WRITE_NEW_VALUE part of the interface of Figure 9.11, and READ_CURRENT_VALUE is simply a
READ from cell storage. We also need a logging implementation of the remaining parts of
the Figure 9.11 interface. The way to implement NEW_ACTION is to log a BEGIN record that
contains just the new all-or-nothing action’s identity. As the all-or-nothing action pro
ceeds through its pre-commit phase, it logs CHANGE records. To implement COMMIT or
ABORT, the all-or-nothing action logs an OUTCOME record that becomes the authoritative
indication of the outcome of the all-or-nothing action. The instant that the all-or-noth
ing action logs the OUTCOME record is its commit point. As an example, Figure 9.19 shows
our by now familiar TRANSFER action implemented with logging.

Because the log is the authoritative record of the action, the all-or-nothing action can
perform installs to cell storage at any convenient time that is consistent with the write-
ahead-log protocol, either before or after logging the OUTCOME record. The final step of an
action is to log an END record, again containing just the action’s identity, to show that the
action has completed all of its installs. (Logging all four kinds of activity—BEGIN, CHANGE,
OUTCOME, and END—is more general than sometimes necessary. As we will see, some log
ging systems can combine, e.g., OUTCOME and END, or BEGIN with the first CHANGE.) Figure
9.20 shows examples of three log records, two typical CHANGE records of an all-or-nothing
TRANSFER action, interleaved with the OUTCOME record of some other, perhaps completely
unrelated, all-or-nothing action.

One consequence of installing results in cell storage is that for an all-or-nothing
action to abort it may have to do some clean-up work. Moreover, if the system involun
tarily terminates a thread that is in the middle of an all-or-nothing action (because, for
example, the thread has gotten into a deadlock or an endless loop) some entity other than
the hapless thread must clean things up. If this clean-up step were omitted, the all-or
nothing action could remain pending indefinitely. The system cannot simply ignore
indefinitely pending actions because all-or-nothing actions initiated by other threads are
likely to want to use the data that the terminated action changed. (This is actually a

Saltzer & Kaashoek Ch. 9, p. 43	 June 24, 2009 12:26 am

9–44 CHAPTER 9 Atomicity: All-or-Nothing and Before-or-After

FIGURE 9.19

1 procedure TRANSFER (debit_account, credit_account, amount)
2 my_id ← LOG (BEGIN_TRANSACTION)
3 dbvalue.old ← GET (debit_account)
4 dbvalue.new ← dbvalue.old - amount
5 crvalue.old ← GET (credit_account, my_id)
6 crvalue.new ← crvalue.old + amount
7 LOG (CHANGE, my_id,
8 “PUT (debit_account, dbvalue.new)”, //redo action
9 “PUT (debit_account, dbvalue.old)”) //undo action
10 LOG (CHANGE, my_id,
11 “PUT (credit_account, crvalue.new)” //redo action
12 “PUT (credit_account, crvalue.old)”) //undo action
13 PUT (debit_account, dbvalue.new) // install
14 PUT (credit_account, crvalue.new) // install
15 if dbvalue.new > 0 then
16 LOG (OUTCOME, COMMIT, my_id)
17 else
18 LOG (OUTCOME, ABORT, my_id)
19 signal(“Action not allowed. Would make debit account negative.”)
20 LOG (END_TRANSACTION, my_id)

An all-or-nothing TRANSFER procedure, implemented with logging.

before-or-after atomicity concern, one of the places where all-or-nothing atomicity and
before-or-after atomicity intersect.)

If the action being aborted did any installs, those installs are still in cell storage, so
simply appending to the log an OUTCOME record saying that the action aborted is not
enough to make it appear to later observers that the all-or-nothing action did nothing.
The solution to this problem is to execute a generic ABORT procedure. The ABORT proce

…

9979

PUT(debit_account, $120)

action_id:

redo_action:

undo_action:

CHANGEtype:

PUT(debit_account, $90)

9974
COMMITTED

action_id:
status:

OUTCOMEtype:
9979

PUT(credit_account, $40)

PUT(credit_account, $10)

action_id:

redo_action:

undo_action:

CHANGEtype:

older log records newer log records

FIGURE 9.20

An example of a section of an atomicity log, showing two CHANGE records for a TRANSFER action
that has action_id 9979 and the OUTCOME record of a different all-or-nothing action.

Saltzer & Kaashoek Ch. 9, p. 44 June 24, 2009 12:26 am

9.3 All-or-Nothing Atomicity II: Pragmatics 9–45

dure restores to their old values all cell storage variables that the all-or-nothing action
installed. The ABORT procedure simply scans the log backwards looking for log entries cre
ated by this all-or-nothing action; for each CHANGE record it finds, it performs the logged
undo_action, thus restoring the old values in cell storage. The backward search terminates
when the ABORT procedure finds that all-or-nothing action’s BEGIN record. Figure 9.21
illustrates.

The extra work required to undo cell storage installs when an all-or-nothing action
aborts is another example of optimizing for the common case: one expects that most all-or
nothing actions will commit, and that aborted actions should be relatively rare. The extra
effort of an occasional roll back of cell storage values will (one hopes) be more than repaid
by the more frequent gains in performance on updates, reads, and commits.

9.3.3 Recovery Procedures

The write-ahead log protocol is the first of the two required protocol elements of a log
ging system. The second required protocol element is that, following every system crash,
the system must run a recovery procedure before it allows ordinary applications to use
the data. The details of the recovery procedure depend on the particular configuration
of the journal and cell storage with respect to volatile and non-volatile memory.

Consider first recovery for the in-memory database of Figure 9.18. Since a system
crash may corrupt anything that is in volatile memory, including both the state of cell
storage and the state of any currently running threads, restarting a crashed system usually
begins by resetting all volatile memory. The effect of this reset is to abandon both the cell

1 procedure ABORT (action_id)

2 starting at end of log repeat until beginning

3 log_record ← previous record of log

4 if log_record.id = action_id then

5 if (log_record.type = OUTCOME)

6 then signal (“Can’t abort an already completed action.”)

7 if (log_record.type = CHANGE)

8 then perform undo_action of log_record

9 if (log_record.type = BEGIN)

10 then break repeat

11 LOG (action_id, OUTCOME, ABORTED) // Block future undos.

12 LOG (action_id, END)

FIGURE 9.21

Generic ABORT procedure for a logging system.The argument action_id identifies the action to
be aborted. An atomic action calls this procedure if it decides to abort. In addition, the operating
system may call this procedure if it decides to terminate the action, for example to break a
deadlock or because the action is running too long. The LOG procedure must itself be atomic.

Saltzer & Kaashoek Ch. 9, p. 45 June 24, 2009 12:26 am

9–46 CHAPTER 9 Atomicity: All-or-Nothing and Before-or-After

FIGURE 9.22

1 procedure RECOVER () // Recovery procedure for a volatile, in-memory database.
2 winners ← NULL

3 starting at end of log repeat until beginning
4 log_record ← previous record of log
5 if (log_record.type = OUTCOME)
6 then winners ← winners + log_record // Set addition.

7 starting at beginning of log repeat until end
8 log_record ← next record of log
9 if (log_record.type= CHANGE)
10 and (outcome_record ← find (log_record.action_id) in winners)
11 and (outcome_record.status = COMMITTED) then
12 perform log_record.redo_action

An idempotent redo-only recovery procedure for an in-memory database. Because RECOVER

writes only to volatile storage, if a crash occurs while it is running it is safe to run it again.

storage version of the database and any all-or-nothing actions that were in progress at the
time of the crash. On the other hand, the log, since it resides on non-volatile journal stor
age, is unaffected by the crash and should still be intact.

The simplest recovery procedure performs two passes through the log. On the first
pass, it scans the log backward from the last record, so the first evidence it will encounter
of each all-or-nothing action is the last record that the all-or-nothing action logged. A
backward log scan is sometimes called a LIFO (for last-in, first-out) log review. As the
recovery procedure scans backward, it collects in a set the identity and completion status
of every all-or-nothing action that logged an OUTCOME record before the crash. These
actions, whether committed or aborted, are known as winners.

When the backward scan is complete the set of winners is also complete, and the
recovery procedure begins a forward scan of the log. The reason the forward scan is
needed is that restarting after the crash completely reset the cell storage. During the for
ward scan the recovery procedure performs, in the order found in the log, all of the REDO

actions of every winner whose OUTCOME record says that it COMMITTED. Those REDOs reinstall
all committed values in cell storage, so at the end of this scan, the recovery procedure has
restored cell storage to a desirable state. This state is as if every all-or-nothing action that
committed before the crash had run to completion, while every all-or-nothing action
that aborted or that was still pending at crash time had never existed. The database sys
tem can now open for regular business. Figure 9.22 illustrates.

This recovery procedure emphasizes the point that a log can be viewed as an author
itative version of the entire database, sufficient to completely reconstruct the reference
copy in cell storage.

There exist cases for which this recovery procedure may be overkill, when the dura
bility requirement of the data is minimal. For example, the all-or-nothing action may

Saltzer & Kaashoek Ch. 9, p. 46 June 24, 2009 12:26 am

9.3 All-or-Nothing Atomicity II: Pragmatics 9–47

have been to make a group of changes to soft state in volatile storage. If the soft state is
completely lost in a crash, there would be no need to redo installs because the definition
of soft state is that the application is prepared to construct new soft state following a
crash. Put another way, given the options of “all” or “nothing,” when the data is all soft
state “nothing” is always an appropriate outcome after a crash.

A critical design property of the recovery procedure is that, if there should be another
system crash during recovery, it must still be possible to recover. Moreover, it must be
possible for any number of crash-restart cycles to occur without compromising the cor
rectness of the ultimate result. The method is to design the recovery procedure to be
idempotent. That is, design it so that if it is interrupted and restarted from the beginning
it will produce exactly the same result as if it had run to completion to begin with. With
the in-memory database configuration, this goal is an easy one: just make sure that the
recovery procedure modifies only volatile storage. Then, if a crash occurs during recov
ery, the loss of volatile storage automatically restores the state of the system to the way it
was when the recovery started, and it is safe to run it again from the beginning. If the
recovery procedure ever finishes, the state of the cell storage copy of the database will be
correct, no matter how many interruptions and restarts intervened.

The ABORT procedure similarly needs to be idempotent because if an all-or-nothing
action decides to abort and, while running ABORT, some timer expires, the system may
decide to terminate and call ABORT for that same all-or-nothing action. The version of
abort in Figure 9.21 will satisfy this requirement if the individual undo actions are them
selves idempotent.

9.3.4 Other Logging Configurations: Non-Volatile Cell Storage

Placing cell storage in volatile memory is a sweeping simplification that works well for
small and medium-sized databases, but some databases are too large for that to be prac
tical, so the designer finds it necessary to place cell storage on some cheaper, non-volatile
storage medium such as magnetic disk, as in the second configuration of Figure 9.18. But
with a non-volatile storage medium, installs survive system crashes, so the simple recov
ery procedure used with the in-memory database would have two shortcomings:

1. 	If, at the time of the crash, there were some pending all-or-nothing actions that
had installed changes, those changes will survive the system crash. The recovery
procedure must reverse the effects of those changes, just as if those actions had
aborted.

2. 	That recovery procedure reinstalls the entire database, even though in this case
much of it is probably intact in non-volatile storage. If the database is large enough
that it requires non-volatile storage to contain it, the cost of unnecessarily
reinstalling it in its entirety at every recovery is likely to be unacceptable.

In addition, reads and writes to non-volatile cell storage are likely to be slow, so it is
nearly always the case that the designer installs a cache in volatile memory, along with a

Saltzer & Kaashoek Ch. 9, p. 47	 June 24, 2009 12:26 am

9–48 CHAPTER 9 Atomicity: All-or-Nothing and Before-or-After

multilevel memory manager, thus moving to the third configuration of Figure 9.18. But
that addition introduces yet another shortcoming:

3. 	In a multilevel memory system, the order in which data is written from volatile
levels to non-volatile levels is generally under control of a multilevel memory
manager, which may, for example, be running a least-recently-used algorithm. As
a result, at the instant of the crash some things that were thought to have been
installed may not yet have migrated to the non-volatile memory.

To postpone consideration of this shortcoming, let us for the moment assume that
the multilevel memory manager implements a write-through cache. (Section 9.3.6,
below, will return to the case where the cache is not write-through.) With a write-
through cache, we can be certain that everything that the application program has
installed has been written to non-volatile storage. This assumption temporarily drops the
third shortcoming out of our list of concerns and the situation is the same as if we were
using the “Ordinary Database” configuration of Figure 9.18 with no cache. But we still
have to do something about the first two shortcomings, and we also must make sure that
the modified recovery procedure is still idempotent.

To address the first shortcoming, that the database may contain installs from actions
that should be undone, we need to modify the recovery procedure of Figure 9.22. As the
recovery procedure performs its initial backward scan, rather than looking for winners,
it instead collects in a set the identity of those all-or-nothing actions that were still in
progress at the time of the crash. The actions in this set are known as losers, and they can
include both actions that committed and actions that did not. Losers are easy to identify
because the first log record that contains their identity that is encountered in a backward
scan will be something other than an END record. To identify the losers, the pseudocode
keeps track of which actions logged an END record in an auxiliary list named completeds.
When RECOVER comes across a log record belong to an action that is not in completed, it
adds that action to the set named losers. In addition, as it scans backwards, whenever the
recovery procedure encounters a CHANGE record belonging to a loser, it performs the UNDO

action listed in the record. In the course of the LIFO log review, all of the installs per
formed by losers will thus be rolled back and the state of the cell storage will be as if the
all-or-nothing actions of losers had never started. Next, RECOVER performs the forward log
scan of the log, performing the redo actions of the all-or-nothing actions that committed,
as shown in Figure 9.23. Finally, the recovery procedure logs an END record for every all-
or-nothing action in the list of losers. This END record transforms the loser into a com
pleted action, thus ensuring that future recoveries will ignore it and not perform its
undos again. For future recoveries to ignore aborted losers is not just a performance
enhancement, it is essential, to avoid incorrectly undoing updates to those same variables
made by future all-or-nothing actions.

As before, the recovery procedure must be idempotent, so that if a crash occurs during
recovery the system can just run the recovery procedure again. In addition to the tech
nique used earlier of placing the temporary variables of the recovery procedure in volatile
storage, each individual undo action must also be idempotent. For this reason, both redo

Saltzer & Kaashoek Ch. 9, p. 48	 June 24, 2009 12:26 am

9.3 All-or-Nothing Atomicity II: Pragmatics 9–49

1 procedure RECOVER ()// Recovery procedure for non-volatile cell memory
2 completeds ← NULL

3 losers ← NULL

4 starting at end of log repeat until beginning
5 log_record ← previous record of log
6 if (log_record.type = END)
7 then completeds ← completeds + log_record // Set addition.
8 if (log_record.action_id is not in completeds) then
9 losers ← losers + log_record // Add if not already in set.
10 if (log_record.type = CHANGE) then
11 perform log_record.undo_action

12 starting at beginning of log repeat until end
13 log_record ← next record of log
14 if (log_record.type = CHANGE)
15 and (log_record.action_id.status = COMMITTED) then
16 perform log_record.redo_action

17 for each log_record in losers do
18 log (log_record.action_id, END) // Show action completed.

FIGURE 9.23

An idempotent undo/redo recovery procedure for a system that performs installs to non-volatile
cell memory. In this recovery procedure, losers are all-or-nothing actions that were in progress
at the time of the crash.

and undo actions are usually expressed as blind writes. A blind write is a simple overwrit
ing of a data value without reference to its previous value. Because a blind write is
inherently idempotent, no matter how many times one repeats it, the result is always the
same. Thus, if a crash occurs part way through the logging of END records of losers, imme
diately rerunning the recovery procedure will still leave the database correct. Any losers
that now have END records will be treated as completed on the rerun, but that is OK
because the previous attempt of the recovery procedure has already undone their installs.

As for the second shortcoming, that the recovery procedure unnecessarily redoes
every install, even installs not belong to losers, we can significantly simplify (and speed
up) recovery by analyzing why we have to redo any installs at all. The reason is that,
although the WAL protocol requires logging of changes to occur before install, there is
no necessary ordering between commit and install. Until a committed action logs its END

record, there is no assurance that any particular install of that action has actually hap
pened yet. On the other hand, any committed action that has logged an END record has
completed its installs. The conclusion is that the recovery procedure does not need to

Saltzer & Kaashoek Ch. 9, p. 49 June 24, 2009 12:26 am

9–50 CHAPTER 9 Atomicity: All-or-Nothing and Before-or-After

FIGURE 9.24

1 procedure RECOVER () // Recovery procedure for rollback recovery.
2 completeds ← NULL

3 losers ← NULL

4 starting at end of log repeat until beginning // Perform undo scan.
5 log_record ← previous record of log
6 if (log_record.type = OUTCOME)
7 then completeds ← completeds + log_record // Set addition.
8 if (log_record.action_id is not in completeds) then
9 losers ← losers + log_record // New loser.
10 if (log_record.type = CHANGE) then
11 perform log_record.undo_action

12 for each log_record in losers do
13 log (log_record.action_id, OUTCOME, ABORT) // Block future undos.

An idempotent undo-only recovery procedure for rollback logging.

redo installs for any committed action that has logged its END record. A useful exercise is
to modify the procedure of Figure 9.23 to take advantage of that observation.

It would be even better if the recovery procedure never had to redo any installs. We
can arrange for that by placing another requirement on the application: it must perform
all of its installs before it logs its OUTCOME record. That requirement, together with the
write-through cache, ensures that the installs of every completed all-or-nothing action
are safely in non-volatile cell storage and there is thus never a need to perform any redo
actions. (It also means that there is no need to log an END record.) The result is that the
recovery procedure needs only to undo the installs of losers, and it can skip the entire
forward scan, leading to the simpler recovery procedure of Figure 9.24. This scheme,
because it requires only undos, is sometimes called undo logging or rollback recovery. A
property of rollback recovery is that for completed actions, cell storage is just as author
itative as the log. As a result, one can garbage collect the log, discarding the log records
of completed actions. The now much smaller log may then be able to fit in a faster stor
age medium for which the durability requirement is only that it outlast pending actions.

There is an alternative, symmetric constraint used by some logging systems. Rather
than requiring that all installs be done before logging the OUTCOME record, one can instead
require that all installs be done after recording the OUTCOME record. With this constraint,
the set of CHANGE records in the log that belong to that all-or-nothing action become a
description of its intentions. If there is a crash before logging an OUTCOME record, we know
that no installs have happened, so the recovery never needs to perform any undos. On
the other hand, it may have to perform installs for all-or-nothing actions that committed.
This scheme is called redo logging or roll-forward recovery. Furthermore, because we are
uncertain about which installs actually have taken place, the recovery procedure must

Saltzer & Kaashoek Ch. 9, p. 50 June 24, 2009 12:26 am

9.3 All-or-Nothing Atomicity II: Pragmatics 9–51

perform all logged installs for all-or-nothing actions that did not log an END record. Any
all-or-nothing action that logged an END record must have completed all of its installs, so
there is no need for the recovery procedure to perform them. The recovery procedure
thus reduces to doing installs just for all-or-nothing actions that were interrupted
between the logging of their OUTCOME and END records. Recovery with redo logging can
thus be quite swift, though it does require both a backward and forward scan of the entire
log.

We can summarize the procedures for atomicity logging as follows:

• 	 Log to journal storage before installing in cell storage (WAL protocol)
• 	If all-or-nothing actions perform 	all installs to non-volatile storage before

logging their OUTCOME record, then recovery needs only to undo the installs of
incomplete uncommitted actions. (rollback/undo recovery)

• 	 If all-or-nothing actions perform no installs to non-volatile storage before logging
their OUTCOME record, then recovery needs only to redo the installs of incomplete
committed actions. (roll-forward/redo recovery)

• 	 If all-or-nothing actions are not disciplined about when they do installs to non
volatile storage, then recovery needs to both redo the installs of incomplete
committed actions and undo the installs of incomplete uncommitted ones.

In addition to reading and updating memory, an all-or-nothing action may also need
to send messages, for example, to report its success to the outside world. The action of
sending a message is just like any other component action of the all-or-nothing action.
To provide all-or-nothing atomicity, message sending can be handled in a way analogous
to memory update. That is, log a CHANGE record with a redo action that sends the message.
If a crash occurs after the all-or-nothing action commits, the recovery procedure will per
form this redo action along with other redo actions that perform installs. In principle,
one could also log an undo_action that sends a compensating message (“Please ignore my
previous communication!”). However, an all-or-nothing action will usually be careful
not to actually send any messages until after the action commits, so roll-forward recovery
applies. For this reason, a designer would not normally specify an undo action for a mes
sage or for any other action that has outside-world visibility such as printing a receipt,
opening a cash drawer, drilling a hole, or firing a missile.

Incidentally, although much of the professional literature about database atomicity
and recovery uses the terms “winner” and “loser” to describe the recovery procedure, dif
ferent recovery systems use subtly different definitions for the two sets, depending on the
exact logging scheme, so it is a good idea to review those definitions carefully.

9.3.5 Checkpoints

Constraining the order of installs to be all before or all after the logging of the OUTCOME

record is not the only thing we could do to speed up recovery. Another technique that
can shorten the log scan is to occasionally write some additional information, known as
a checkpoint, to non-volatile storage. Although the principle is always the same, the exact

Saltzer & Kaashoek Ch. 9, p. 51	 June 24, 2009 12:26 am

9–52 CHAPTER 9 Atomicity: All-or-Nothing and Before-or-After

information that is placed in a checkpoint varies from one system to another. A check
point can include information written either to cell storage or to the log (where it is
known as a checkpoint record) or both.

Suppose, for example, that the logging system maintains in volatile memory a list of
identifiers of all-or-nothing actions that have started but have not yet recorded an END

record, together with their pending/committed/aborted status, keeping it up to date by
observing logging calls. The logging system then occasionally logs this list as a CHECKPOINT

record. When a crash occurs sometime later, the recovery procedure begins a LIFO log
scan as usual, collecting the sets of completed actions and losers. When it comes to a
CHECKPOINT record it can immediately fill out the set of losers by adding those all-or-noth
ing actions that were listed in the checkpoint that did not later log an END record. This
list may include some all-or-nothing actions listed in the CHECKPOINT record as COMMITTED,
but that did not log an END record by the time of the crash. Their installs still need to be
performed, so they need to be added to the set of losers. The LIFO scan continues, but
only until it has found the BEGIN record of every loser.

With the addition of CHECKPOINT records, the recovery procedure becomes more com
plex, but is potentially shorter in time and effort:

1. 	Do a LIFO scan of the log back to the last CHECKPOINT record, collecting identifiers
of losers and undoing all actions they logged.

2. 	Complete the list of losers from information in the checkpoint.

3. 	Continue the LIFO scan, undoing the actions of losers, until every BEGIN record
belonging to every loser has been found.

4. 	Perform a forward scan from that point to the end of the log, performing any
committed actions belonging to all-or-nothing actions in the list of losers that
logged an OUTCOME record with status COMMITTED.

In systems in which long-running all-or-nothing actions are uncommon, step 3 will typ
ically be quite brief or even empty, greatly shortening recovery. A good exercise is to
modify the recovery program of Figure 9.23 to accommodate checkpoints.

Checkpoints are also used with in-memory databases, to provide durability without
the need to reprocess the entire log after every system crash. A useful checkpoint proce
dure for an in-memory database is to make a snapshot of the complete database, writing
it to one of two alternating (for all-or-nothing atomicity) dedicated non-volatile storage
regions, and then logging a CHECKPOINT record that contains the address of the latest snap
shot. Recovery then involves scanning the log back to the most recent CHECKPOINT record,
collecting a list of committed all-or-nothing actions, restoring the snapshot described
there, and then performing redo actions of those committed actions from the CHECKPOINT

record to the end of the log. The main challenge in this scenario is dealing with update
activity that is concurrent with the writing of the snapshot. That challenge can be met
either by preventing all updates for the duration of the snapshot or by applying more
complex before-or-after atomicity techniques such as those described in later sections of
this chapter.

Saltzer & Kaashoek Ch. 9, p. 52	 June 24, 2009 12:26 am

9.3 All-or-Nothing Atomicity II: Pragmatics 9–53

9.3.6 What if the Cache is not Write-Through? (Advanced Topic)

Between the log and the write-through cache, the logging configurations just described
require, for every data update, two synchronous writes to non-volatile storage, with
attendant delays waiting for the writes to complete. Since the original reason for intro
ducing a log was to increase performance, these two synchronous write delays usually
become the system performance bottleneck. Designers who are interested in maximizing
performance would prefer to use a cache that is not write-through, so that writes can be
deferred until a convenient time when they can be done in batches. Unfortunately, the
application then loses control of the order in which things are actually written to non
volatile storage. Loss of control of order has a significant impact on our all-or-nothing
atomicity algorithms, since they require, for correctness, constraints on the order of
writes and certainty about which writes have been done.

The first concern is for the log itself because the write-ahead log protocol requires that
appending a CHANGE record to the log precede the corresponding install in cell storage.
One simple way to enforce the WAL protocol is to make just log writes write-through,
but allow cell storage writes to occur whenever the cache manager finds it convenient.
However, this relaxation means that if the system crashes there is no assurance that any
particular install has actually migrated to non-volatile storage. The recovery procedure,
assuming the worst, cannot take advantage of checkpoints and must again perform
installs starting from the beginning of the log. To avoid that possibility, the usual design
response is to flush the cache as part of logging each checkpoint record. Unfortunately,
flushing the cache and logging the checkpoint must be done as a before-or-after action
to avoid getting tangled with concurrent updates, which creates another design chal
lenge. This challenge is surmountable, but the complexity is increasing.

Some systems pursue performance even farther. A popular technique is to write the
log to a volatile buffer, and force that entire buffer to non-volatile storage only when an
all-or-nothing action commits. This strategy allows batching several CHANGE records with
the next OUTCOME record in a single synchronous write. Although this step would appear
to violate the write-ahead log protocol, that protocol can be restored by making the cache
used for cell storage a bit more elaborate; its management algorithm must avoid writing
back any install for which the corresponding log record is still in the volatile buffer. The
trick is to number each log record in sequence, and tag each record in the cell storage
cache with the sequence number of its log record. Whenever the system forces the log, it
tells the cache manager the sequence number of the last log record that it wrote, and the
cache manager is careful never to write back any cache record that is tagged with a higher
log sequence number.

We have in this section seen some good examples of the law of diminishing returns at
work: schemes that improve performance sometimes require significantly increased com
plexity. Before undertaking any such scheme, it is essential to evaluate carefully how
much extra performance one stands to gain.

Saltzer & Kaashoek Ch. 9, p. 53 June 24, 2009 12:26 am

9–54 CHAPTER 9 Atomicity: All-or-Nothing and Before-or-After

9.4 Before-or-After Atomicity I: Concepts
The mechanisms developed in the previous sections of this chapter provide atomicity in
the face of failure, so that other atomic actions that take place after the failure and sub
sequent recovery find that an interrupted atomic action apparently either executed all of
its steps or none of them. This and the next section investigate how to also provide ato
micity of concurrent actions, known as before-or-after atomicity. In this development we
will provide both all-or-nothing atomicity and before-or-after atomicity, so we will now
be able to call the resulting atomic actions transactions.

Concurrency atomicity requires additional mechanism because when an atomic
action installs data in cell storage, that data is immediately visible to all concurrent
actions. Even though the version history mechanism can hide pending changes from
concurrent atomic actions, they can read other variables that the first atomic action plans
to change. Thus, the composite nature of a multiple-step atomic action may still be dis
covered by a concurrent atomic action that happens to look at the value of a variable in
the midst of execution of the first atomic action. Thus, making a composite action
atomic with respect to concurrent threads—that is, making it a before-or-after action—
requires further effort.

Recall that Section 9.1.5 defined the operation of concurrent actions to be correct if
every result is guaranteed to be one that could have been obtained by some purely serial appli
cation of those same actions. So we are looking for techniques that guarantee to produce
the same result as if concurrent actions had been applied serially, yet maximize the per
formance that can be achieved by allowing concurrency.

In this Section 9.4 we explore three successively better before-or-after atomicity
schemes, where “better” means that the scheme allows more concurrency. To illustrate
the concepts we return to version histories, which allow a straightforward and compel
ling correctness argument for each scheme. Because version histories are rarely used in
practice, in the following Section 9.5 we examine a somewhat different approach, locks,
which are widely used because they can provide higher performance, but for which cor
rectness arguments are more difficult.

9.4.1 Achieving Before-or-After Atomicity: Simple Serialization

A version history assigns a unique identifier to each atomic action so that it can link ten
tative versions of variables to the action’s outcome record. Suppose that we require that
the unique identifiers be consecutive integers, which we interpret as serial numbers, and
we modify the procedure BEGIN_TRANSACTION by adding enforcement of the following sim
ple serialization rule: each newly created transaction n must, before reading or writing any
data, wait until the preceding transaction n – 1 has either committed or aborted. (To
ensure that there is always a transaction n – 1, assume that the system was initialized by
creating a transaction number zero with an OUTCOME record in the committed state.) Fig
ure 9.25 shows this version of BEGIN_TRANSACTION. The scheme forces all transactions to
execute in the serial order that threads happen to invoke BEGIN_TRANSACTION. Since that

Saltzer & Kaashoek Ch. 9, p. 54 June 24, 2009 12:26 am

9.4 Before-or-After Atomicity I: Concepts 9–55

1 procedure BEGIN_TRANSACTION ()
2 id ← NEW_OUTCOME_RECORD (PENDING) // Create, initialize, assign id.
3 previous_id ← id – 1
4 wait until previous_id.outcome_record.state ≠ PENDING

5 return id

FIGURE 9.25

BEGIN_TRANSACTION with the simple serialization discipline to achieve before-or-after atomicity.
In order that there be an id – 1 for every value of id, startup of the system must include creating
a dummy transaction with id = 0 and id.outcome_record.state set to COMMITTED. Pseudocode
for the procedure NEW_OUTCOME_RECORD appears in Figure 9.30.

order is a possible serial order of the various transactions, by definition simple serializa
tion will produce transactions that are serialized and thus are correct before-or-after
actions. Simple serialization trivially provides before-or-after atomicity, and the transac
tion is still all-or-nothing, so the transaction is now atomic both in the case of failure and
in the presence of concurrency.

Simple serialization provides before-or-after atomicity by being too conservative: it
prevents all concurrency among transactions, even if they would not interfere with one
another. Nevertheless, this approach actually has some practical value—in some applica
tions it may be just the right thing to do, on the basis of simplicity. Concurrent threads
can do much of their work in parallel because simple serialization comes into play only
during those times that threads are executing transactions, which they generally would
be only at the moments they are working with shared variables. If such moments are
infrequent or if the actions that need before-or-after atomicity all modify the same small
set of shared variables, simple serialization is likely to be just about as effective as any
other scheme. In addition, by looking carefully at why it works, we can discover less con
servative approaches that allow more concurrency, yet still have compelling arguments
that they preserve correctness. Put another way, the remainder of study of before-or-after
atomicity techniques is fundamentally nothing but invention and analysis of increasingly
effective—and increasingly complex—performance improvement measures.

The version history provides a useful representation for this analysis. Figure 9.26
illustrates in a single figure the version histories of a banking system consisting of four
accounts named A, B, C, and D, during the execution of six transactions, with serial num
bers 1 through 6. The first transaction initializes all the objects to contain the value 0 and
the following transactions transfer various amounts back and forth between pairs of
accounts.

This figure provides a straightforward interpretation of why simple serialization
works correctly. Consider transaction 3, which must read and write objects B and C in
order to transfer funds from one to the other. The way for transaction 3 to produce
results as if it ran after transaction 2 is for all of 3’s input objects to have values that
include all the effects of transaction 2—if transaction 2 commits, then any objects it

Saltzer & Kaashoek Ch. 9, p. 55 June 24, 2009 12:26 am

9–56 CHAPTER 9 Atomicity: All-or-Nothing and Before-or-After

Object value of object at end of transaction

A

1

0

2

+10

3 4

+12

5 6

0

B 0 -10 -6 -12 -2

C 0 -4 +2

D 0 -2

outcome
record
state

Committed Committed Committed Aborted Committed Pending

transaction 1: initialize all accounts to 0
2: transfer 10 from B to A
3: transfer 4 from C to B
4: transfer 2 from D to A (aborts)
5: transfer 6 from B to C
6: transfer 10 from A to B

FIGURE 9.26

Version history of a banking system.

changed and that 3 uses should have new values; if transaction 2 aborts, then any objects
it tentatively changed and 3 uses should contain the values that they had when transac
tion 2 started. Since in this example transaction 3 reads B and transaction 2 creates a new
version of B, it is clear that for transaction 3 to produce a correct result it must wait until
transaction 2 either commits or aborts. Simple serialization requires that wait, and thus
ensures correctness.

Figure 9.26 also provides some clues about how to increase concurrency. Looking at
transaction 4 (the example shows that transaction 4 will ultimately abort for some reason,
but suppose we are just starting transaction 4 and don’t know that yet), it is apparent that
simple serialization is too strict. Transaction 4 reads values only from A and D, yet trans
action 3 has no interest in either object. Thus the values of A and D will be the same
whether or not transaction 3 commits, and a discipline that forces 4 to wait for 3’s com
pletion delays 4 unnecessarily. On the other hand, transaction 4 does use an object that
transaction 2 modifies, so transaction 4 must wait for transaction 2 to complete. Of
course, simple serialization guarantees that, since transaction 4 can’t begin till transaction
3 completes and transaction 3 couldn’t have started until transaction 2 completed.

Saltzer & Kaashoek Ch. 9, p. 56 June 24, 2009 12:26 am

9.4 Before-or-After Atomicity I: Concepts 9–57

Object Value of object at end of transaction
1 2 3 4 5 6 7

A

B

C

D

0

0

0

0

+10

-10 -6

-4

+12

-2

-12

+2

0

-2

+10 +12 0

-6 -2

0 -4 +2 +2

0 0 -2 -2 -2

OUTCOME

record Committed Committed Committed Aborted Committed Pending Pending

state

Unchanged value

Changed value

FIGURE 9.27

System state history with unchanged values shown.

These observations suggest that there may be other, more relaxed, disciplines that can
still guarantee correct results. They also suggest that any such discipline will probably
involve detailed examination of exactly which objects each transaction reads and writes.

Figure 9.26 represents the state history of the entire system in serialization order, but
the slightly different representation of Figure 9.27 makes that state history more explicit.
In Figure 9.27 it appears that each transaction has perversely created a new version of
every object, with unchanged values in dotted boxes for those objects it did not actually
change. This representation emphasizes that the vertical slot for, say, transaction 3 is in
effect a reservation in the state history for every object in the system; transaction 3 has an
opportunity to propose a new value for any object, if it so wishes.

The reason that the system state history is helpful to the discussion is that as long as
we eventually end up with a state history that has the values in the boxes as shown, the
actual order in real time in which individual object values are placed in those boxes is
unimportant. For example, in Figure 9.27, transaction 3 could create its new version of
object C before transaction 2 creates its new version of B. We don’t care when things hap
pen, as long as the result is to fill in the history with the same set of values that would
result from strictly following this serial ordering. Making the actual time sequence unim-

Saltzer & Kaashoek Ch. 9, p. 57 June 24, 2009 12:26 am

9–58 CHAPTER 9 Atomicity: All-or-Nothing and Before-or-After

portant is exactly our goal, since that allows us to put concurrent threads to work on the
various transactions. There are, of course, constraints on time ordering, but they become
evident by examining the state history.

Figure 9.27 allows us to see just what time constraints must be observed in order for
the system state history to record this particular sequence of transactions. In order for a
transaction to generate results appropriate for its position in the sequence, it should use
as its input values the latest versions of all of its inputs. If Figure 9.27 were available,
transaction 4 could scan back along the histories of its inputs A and D, to the most recent
solid boxes (the ones created by transactions 2 and 1, respectively) and correctly conclude
that if transactions 2 and 1 have committed then transaction 4 can proceed—even if
transaction 3 hasn’t gotten around to filling in values for B and C and hasn’t decided
whether or not it should commit.

This observation suggests that any transaction has enough information to ensure
before-or-after atomicity with respect to other transactions if it can discover the dotted-
versus-solid status of those version history boxes to its left. The observation also leads to
a specific before-or-after atomicity discipline that will ensure correctness. We call this
discipline mark-point.

9.4.2 The Mark-Point Discipline

Concurrent threads that invoke READ_CURRENT_VALUE as implemented in Figure 9.15 can
not see a pending version of any variable. That observation is useful in designing a
before-or-after atomicity discipline because it allows a transaction to reveal all of its
results at once simply by changing the value of its OUTCOME record to COMMITTED. But in
addition to that we need a way for later transactions that need to read a pending version
to wait for it to become committed. The way to do that is to modify READ_CURRENT_VALUE

to wait for, rather than skip over, pending versions created by transactions that are earlier
in the sequential ordering (that is, they have a smaller caller_id), as implemented in lines
4–9 of Figure 9.28. Because, with concurrency, a transaction later in the ordering may
create a new version of the same variable before this transaction reads it,
READ_CURRENT_VALUE still skips over any versions created by transactions that have a larger
caller_id. Also, as before, it may be convenient to have a READ_MY_VALUE procedure (not
shown) that returns pending values previously written by the running transaction.

Adding the ability to wait for pending versions in READ_CURRENT_VALUE is the first step;
to ensure correct before-or-after atomicity we also need to arrange that all variables that
a transaction needs as inputs, but that earlier, not-yet-committed transactions plan to
modify, have pending versions. To do that we call on the application programmer (for
example, the programmer of the TRANSFER transaction) do a bit of extra work: each trans
action should create new, pending versions of every variable it intends to modify, and
announce when it is finished doing so. Creating a pending version has the effect of mark
ing those variables that are not ready for reading by later transactions, so we will call the
point at which a transaction has created them all the mark point of the transaction. The

Saltzer & Kaashoek Ch. 9, p. 58 June 24, 2009 12:26 am

9.4 Before-or-After Atomicity I: Concepts 9–59

transaction announces that it has passed its mark point by calling a procedure named
MARK_POINT_ANNOUNCE, which simply sets a flag in the outcome record for that transaction.

The mark-point discipline then is that no transaction can begin reading its inputs
until the preceding transaction has reached its mark point or is no longer pending. This
discipline requires that each transaction identify which data it will update. If the trans
action has to modify some data objects before it can discover the identity of others that
require update, it could either delay setting its mark point until it does know all of the
objects it will write (which would, of course, also delay all succeeding transactions) or use
the more complex discipline described in the next section.

For example, in Figure 9.27, the boxes under newly arrived transaction 7 are all dot
ted; transaction 7 should begin by marking the ones that it plans to make solid. For
convenience in marking, we split the WRITE_NEW_VALUE procedure of Figure 9.15 into two
parts, named NEW_VERSION and WRITE_VALUE, as in Figure 9.29. Marking then consists sim
ply of a series of calls to NEW_VERSION. When finished marking, the transaction calls
MARK_POINT_ANNOUNCE. It may then go about its business, reading and writing values as
appropriate to its purpose.

Finally, we enforce the mark point discipline by putting a test and, depending on its
outcome, a wait in BEGIN_TRANSACTION, as in Figure 9.30, so that no transaction may begin
execution until the preceding transaction either reports that it has reached its mark point
or is no longer PENDING. Figure 9.30 also illustrates an implementation of
MARK_POINT_ANNOUNCE. No changes are needed in procedures ABORT and COMMIT as shown
in Figure 9.13, so they are not repeated here.

Because no transaction can start until the previous transaction reaches its mark point,
all transactions earlier in the serial ordering must also have passed their mark points, so
every transaction earlier in the serial ordering has already created all of the versions that
it ever will. Since READ_CURRENT_VALUE now waits for earlier, pending values to become

1 procedure READ_CURRENT_VALUE (data_id, this_transaction_id)
2 starting at end of data_id repeat until beginning
3 v ← previous version of data_id
4 last_modifier ← v.action_id
5 if last_modifier ≥ this_transaction_id then skip v // Keep searching
6 wait until (last_modifier.outcome_record.state ≠ PENDING)
7 if (last_modifier.outcome_record.state = COMMITTED)
8 then return v.state
9 else skip v // Resume search
10 signal (“Tried to read an uninitialized variable”)

FIGURE 9.28

READ_CURRENT_VALUE for the mark-point discipline.This form of the procedure skips all versions
created by transactions later than the calling transaction, and it waits for a pending version cre
ated by an earlier transaction until that earlier transaction commits or aborts.

Saltzer & Kaashoek Ch. 9, p. 59 June 24, 2009 12:26 am

9–60 CHAPTER 9 Atomicity: All-or-Nothing and Before-or-After

FIGURE 9.29

1 procedure NEW_VERSION (reference data_id, this_transaction_id)
2 if this_transaction_id.outcome_record.mark_state = MARKED then
3 signal (“Tried to create new version after announcing mark point!”)
4 append new version v to data_id
5 v.value ← NULL

6 v.action_id ← transaction_id

7 procedure WRITE_VALUE (reference data_id, new_value, this_transaction_id)
8 starting at end of data_id repeat until beginning
9 v ← previous version of data_id
10 if v.action_id = this_transaction_id
11 v.value ← new_value
12 return
13 signal (“Tried to write without creating new version!”))

Mark-point discipline versions of NEW_VERSION and WRITE_VALUE.

FIGURE 9.30

1 procedure BEGIN_TRANSACTION ()
2 id ← NEW_OUTCOME_RECORD (PENDING)
3 previous_id ← id - 1
4 wait until (previous_id.outcome_record.mark_state = MARKED)
5 or (previous_id.outcome_record.state ≠ PENDING)
6 return id

7 procedure NEW_OUTCOME_RECORD (starting_state)
8 ACQUIRE (outcome_record_lock) // Make this a before-or-after action.
9 id ← TICKET (outcome_record_sequencer)
10 allocate id.outcome_record
11 id.outcome_record.state ← starting_state
12 id.outcome_record.mark_state ← NULL

13 RELEASE (outcome_record_lock)
14 return id

15 procedure MARK_POINT_ANNOUNCE (reference this_transaction_id)
16 this_transaction_id.outcome_record.mark_state ← MARKED

The procedures BEGIN_TRANSACTION, NEW_OUTCOME_RECORD, and MARK_POINT_ANNOUNCE for the
mark-point discipline. BEGIN_TRANSACTION presumes that there is always a preceding transac
tion. so the system should be initialized by calling NEW_OUTCOME_RECORD to create an empty
initial transaction in the starting_state COMMITTED and immediately calling
MARK_POINT_ANNOUNCE for the empty transaction.

Saltzer & Kaashoek Ch. 9, p. 60 June 24, 2009 12:26 am

9.4 Before-or-After Atomicity I: Concepts 9–61

committed or aborted, it will always return to its client a value that represents the final
outcome of all preceding transactions. All input values to a transaction thus contain the
committed result of all transactions that appear earlier in the serial ordering, just as if it
had followed the simple serialization discipline. The result is thus guaranteed to be
exactly the same as one produced by a serial ordering, no matter in what real time order
the various transactions actually write data values into their version slots. The particular
serial ordering that results from this discipline is, as in the case of the simple serialization
discipline, the ordering in which the transactions were assigned serial numbers by
NEW_OUTCOME_RECORD.

There is one potential interaction between all-or-nothing atomicity and before-or
after atomicity. If pending versions survive system crashes, at restart the system must
track down all PENDING transaction records and mark them ABORTED to ensure that future
invokers of READ_CURRENT_VALUE do not wait for the completion of transactions that have
forever disappeared.

The mark-point discipline provides before-or-after atomicity by bootstrapping from
a more primitive before-or-after atomicity mechanism. As usual in bootstrapping, the
idea is to reduce some general problem—here, that problem is to provide before-or-after
atomicitiy for arbitrary application programs—to a special case that is amenable to a spe
cial-case solution—here, the special case is construction and initialization of a new
outcome record. The procedure NEW_OUTCOME_RECORD in Figure 9.30 must itself be a
before-or-after action because it may be invoked concurrently by several different threads
and it must be careful to give out different serial numbers to each of them. It must also
create completely initialized outcome records, with value and mark_state set to PENDING

and NULL, respectively, because a concurrent thread may immediately need to look at one
of those fields. To achieve before-or-after atomicity, NEW_OUTCOME_RECORD bootstraps
from the TICKET procedure of Section 5.6.3 to obtain the next sequential serial number,
and it uses ACQUIRE and RELEASE to make its initialization steps a before-or-after action.
Those procedures in turn bootstrap from still lower-level before-or-after atomicity mech
anisms, so we have three layers of bootstrapping.

We can now reprogram the funds TRANSFER procedure of Figure 9.15 to be atomic
under both failure and concurrent activity, as in Figure 9.31. The major change from the
earlier version is addition of lines 4 through 6, in which TRANSFER calls NEW_VERSION to
mark the two variables that it intends to modify and then calls MARK_POINT_ANNOUNCE. The
interesting observation about this program is that most of the work of making actions
before-or-after is actually carried out in the called procedures. The only effort or thought
required of the application programmer is to identify and mark, by creating new ver
sions, the variables that the transaction will modify.

The delays (which under the simple serialization discipline would all be concentrated
in BEGIN_TRANSACTION) are distributed under the mark-point discipline. Some delays may
still occur in BEGIN_TRANSACTION, waiting for the preceding transaction to reach its mark
point. But if marking is done before any other calculations, transactions are likely to
reach their mark points promptly, and thus this delay should be not as great as waiting
for them to commit or abort. Delays can also occur at any invocation of

Saltzer & Kaashoek Ch. 9, p. 61 June 24, 2009 12:26 am

9–62 CHAPTER 9 Atomicity: All-or-Nothing and Before-or-After

FIGURE 9.31

1 procedure TRANSFER (reference debit_account, reference credit_account,
2 amount)
3 my_id ← BEGIN_TRANSACTION ()
4 NEW_VERSION (debit_account, my_id)
5 NEW_VERSION (credit_account, my_id)
6 MARK_POINT_ANNOUNCE (my_id);
7 xvalue ← READ_CURRENT_VALUE (debit_account, my_id)
8 xvalue ← xvalue - amount
9 WRITE_VALUE (debit_account, xvalue, my_id)
10 yvalue ← READ_CURRENT_VALUE (credit_account, my_id)
11 yvalue ← yvalue + amount
12 WRITE_VALUE (credit_account, yvalue, my_id)
13 if xvalue > 0 then
14 COMMIT (my_id)
15 else
16 ABORT (my_id)
17 signal(“Negative transfers are not allowed.”)

An implementation of the funds transfer procedure that uses the mark point discipline to ensure
that it is atomic both with respect to failure and with respect to concurrent activity.

READ_CURRENT_VALUE, but only if there is really something that the transaction must wait
for, such as committing a pending version of a necessary input variable. Thus the overall
delay for any given transaction should never be more than that imposed by the simple
serialization discipline, and one might anticipate that it will often be less.

A useful property of the mark-point discipline is that it never creates deadlocks.
Whenever a wait occurs it is a wait for some transaction earlier in the serialization. That
transaction may in turn be waiting for a still earlier transaction, but since no one ever
waits for a transaction later in the ordering, progress is guaranteed. The reason is that at
all times there must be some earliest pending transaction. The ordering property guar
antees that this earliest pending transaction will encounter no waits for other transactions
to complete, so it, at least, can make progress. When it completes, some other transaction
in the ordering becomes earliest, and it now can make progress. Eventually, by this argu
ment, every transaction will be able to make progress. This kind of reasoning about
progress is a helpful element of a before-or-after atomicity discipline. In Section 9.5 of
this chapter we will encounter before-or-after atomicity disciplines that are correct in the
sense that they guarantee the same result as a serial ordering, but they do not guarantee
progress. Such disciplines require additional mechanisms to ensure that threads do not
end up deadlocked, waiting for one another forever.

Two other minor points are worth noting. First, if transactions wait to announce
their mark point until they are ready to commit or abort, the mark-point discipline
reduces to the simple serialization discipline. That observation confirms that one disci-

Saltzer & Kaashoek Ch. 9, p. 62 June 24, 2009 12:26 am

9.4 Before-or-After Atomicity I: Concepts 9–63

pline is a relaxed version of the other. Second, there are at least two opportunities in the
mark-point discipline to discover and report protocol errors to clients. A transaction
should never call NEW_VERSION after announcing its mark point. Similarly, WRITE_VALUE

can report an error if the client tries to write a value for which a new version was never
created. Both of these error-reporting opportunities are implemented in the pseudocode
of Figure 9.29.

9.4.3 Optimistic Atomicity: Read-Capture (Advanced Topic)

Both the simple serialization and mark-point disciplines are concurrency control meth
ods that may be described as pessimistic. That means that they presume that interference
between concurrent transactions is likely and they actively prevent any possibility of
interference by imposing waits at any point where interference might occur. In doing so,
they also may prevent some concurrency that would have been harmless to correctness.
An alternative scheme, called optimistic concurrency control, is to presume that interfer
ence between concurrent transactions is unlikely, and allow them to proceed without
waiting. Then, watch for actual interference, and if it happens take some recovery action,
for example aborting an interfering transaction and makaing it restart. (There is a popu
lar tongue-in-cheek characterization of the difference: pessimistic = “ask first”, optimistic
= “apologize later”.) The goal of optimistic concurrency control is to increase concur
rency in situations where actual interference is rare.

The system state history of Figure 9.27 suggests an opportunity to be optimistic. We
could allow transactions to write values into the system state history in any order and at
any time, but with the risk that some attempts to write may be met with the response
“Sorry, that write would interfere with another transaction. You must abort, abandon
this serialization position in the system state history, obtain a later serialization, and
rerun your transaction from the beginning.”

A specific example of this approach is the read-capture discipline. Under the read-cap
ture discipline, there is an option, but not a requirement, of advance marking.
Eliminating the requirement of advance marking has the advantage that a transaction
does not need to predict the identity of every object it will update—it can discover the
identity of those objects as it works. Instead of advance marking, whenever a transaction
calls READ_CURRENT_VALUE, that procedure makes a mark at this thread’s position in the
version history of the object it read. This mark tells potential version-inserters earlier in
the serial ordering but arriving later in real time that they are no longer allowed to
insert—they must abort and try again, using a later serial position in the version history.
Had the prospective version inserter gotten there sooner, before the reader had left its
mark, the new version would have been acceptable, and the reader would have instead
waited for the version inserter to commit, and taken that new value instead of the earlier
one. Read-capture gives the reader the power of extending validity of a version through
intervening transactions, up to the reader’s own serialization position. This view of the
situation is illustrated in Figure 9.32, which has the same version history as did Figure
9.27.

Saltzer & Kaashoek Ch. 9, p. 63 June 24, 2009 12:26 am

9–64 CHAPTER 9 Atomicity: All-or-Nothing and Before-or-After

Value of object at end of transaction

1 2 3 4 5 6 7

A

B 0 -10 -6 -12 -2
HWM=2 HWM=5 HWM=6HWM=3

C 0 -4 +2
HWM=5HWM=3

D 0 -2

Committed Committed Committed Aborted Committed Pending

0 +10 +12 0

Outcome recordstate

Pending

Conflict

Changed value

HWM=2 HWM=6

Conflict: Must abort!

High-water markHWM=

HWM=7

HWM=7HWM=4
-4

+2

FIGURE 9.32

Version history with high-water marks and the read-capture discipline. First, transaction 6,
which is running concurrently with transaction 4, reads variable A, thus extending the high-
water mark of A to 6. Then, transaction 4 (which intends to transfer 2 from D to A) encounters
a conflict when it tries to create a new version of A and discovers that the high-water mark of
A has already been set by transaction 6, so 4 aborts and returns as transaction 7. Transaction
7 retries transaction 4, extending the high-water marks of A and D to 7.

The key property of read-capture is illustrated by an example in Figure 9.32. Trans
action 4 was late in creating a new version of object A; by the time it tried to do the
insertion, transaction 6 had already read the old value (+10) and thereby extended the
validity of that old value to the beginning of transaction 6. Therefore, transaction 4 had
to be aborted; it has been reincarnated to try again as transaction 7. In its new position
as transaction 7, its first act is to read object D, extending the validity of its most recent
committed value (zero) to the beginning of transaction 7. When it tries to read object A,
it discovers that the most recent version is still uncommitted, so it must wait for transac
tion 6 to either commit or abort. Note that if transaction 6 should now decide to create
a new version of object C, it can do so without any problem, but if it should try to create
a new version of object D, it would run into a conflict with the old, now extended version
of D, and it would have to abort.

Saltzer & Kaashoek Ch. 9, p. 64 June 24, 2009 12:26 am

9.4 Before-or-After Atomicity I: Concepts 9–65

FIGURE 9.33

1 procedure READ_CURRENT_VALUE (reference data_id, value, caller_id)
2 starting at end of data_id repeat until beginning
3 v ← previous version of data_id
4 if v.action_id ≥ caller_id then skip v
5 examine v.action_id.outcome_record
6 if PENDING then
7 WAIT for v.action_id to COMMIT or ABORT

8 if COMMITTED then
9 v.high_water_mark ← max(v.high_water_mark, caller_id)
10 return v.value
11 else skip v // Continue backward search
12 signal (“Tried to read an uninitialized variable!”)

13 procedure NEW_VERSION (reference data_id, caller_id)
14 if (caller_id < data_id.high_water_mark) // Conflict with later reader.
15 or (caller_id < (LATEST_VERSION[data_id].action_id)) // Blind write conflict.
16 then ABORT this transaction and terminate this thread
17 add new version v at end of data_id
18 v.value ← 0
19 v.action_id ← caller_id

20 procedure WRITE_VALUE (reference data_id, new_value, caller_id)
21 locate version v of data_id.history such that v.action_id = caller_id
22 (if not found, signal (“Tried to write without creating new version!”))
23 v.value ← new_value

Read-capture forms of READ_CURRENT_VALUE, NEW_VERSION, and WRITE_VALUE.

Read-capture is relatively easy to implement in a version history system. We start, as
shown in Figure 9.33, by adding a new step (at line 9) to READ_CURRENT_VALUE. This new
step records with each data object a high-water mark—the serial number of the highest-
numbered transaction that has ever read a value from this object’s version history. The
high-water mark serves as a warning to other transactions that have earlier serial numbers
but are late in creating new versions. The warning is that someone later in the serial
ordering has already read a version of this object from earlier in the ordering, so it is too
late to create a new version now. We guarantee that the warning is heeded by adding a
step to NEW_VERSION (at line 14), which checks the high-water mark for the object to be
written, to see if any transaction with a higher serial number has already read the current
version of the object. If not, we can create a new version without concern. But if the
transaction serial number in the high-water mark is greater than this transaction’s own
serial number, this transaction must abort, obtain a new, higher serial number, and start
over again.

Saltzer & Kaashoek Ch. 9, p. 65 June 24, 2009 12:26 am

9–66 CHAPTER 9 Atomicity: All-or-Nothing and Before-or-After

We have removed all constraints on the real-time sequence of the constituent steps of
the concurrent transaction, so there is a possibility that a high-numbered transaction will
create a new version of some object, and then later a low-numbered transaction will try
to create a new version of the same object. Since our NEW_VERSION procedure simply tacks
new versions on the end of the object history, we could end up with a history in the
wrong order. The simplest way to avoid that mistake is to put an additional test in
NEW_VERSION (at line 15), to ensure that every new version has a client serial number that
is larger than the serial number of the next previous version. If not, NEW_VERSION aborts
the transaction, just as if a read-capture conflict had occurred. (This test aborts only
those transactions that perform conflicting blind writes, which are uncommon. If either
of the conflicting transactions reads the value before writing it, the setting and testing of
high_water_mark will catch and prevent the conflict.)

The first question one must raise about this kind of algorithm is whether or not it
actually works: is the result always the same as some serial ordering of the concurrent
transactions? Because the read-capture discipline permits greater concurrency than does
mark-point, the correctness argument is a bit more involved. The induction part of the
argument goes as follows:

1. 	The WAIT for PENDING values in READ_CURRENT_VALUE ensures that if any pending
transaction k < n has modified any value that is later read by transaction n,
transaction n will wait for transaction k to commit or abort.

2. 	The setting of the high-water mark when transaction n calls READ_CURRENT_VALUE,
together with the test of the high-water mark in NEW_VERSION ensures that if any
transaction j < n tries to modify any value after transaction n has read that value,
transaction j will abort and not modify that value.

3. 	Therefore, every value that READ_CURRENT_VALUE returns to transaction n will
include the final effect of all preceding transactions 1...n – 1.

4. 	Therefore, every transaction n will act as if it serially follows transaction n – 1.

Optimistic coordination disciplines such as read-capture have the possibly surprising
effect that something done by a transaction later in the serial ordering can cause a trans
action earlier in the ordering to abort. This effect is the price of optimism; to be a good
candidate for an optimistic discipline, an application probably should not have a lot of
data interference.

A subtlety of read-capture is that it is necessary to implement bootstrapping before-
or-after atomicity in the procedure NEW_VERSION, by adding a lock and calls to ACQUIRE and
RELEASE because NEW_VERSION can now be called by two concurrent threads that happen
to add new versions to the same variable at about the same time. In addition, NEW_VERSION

must be careful to keep versions of the same variable in transaction order, so that the
backward search performed by READ_CURRENT_VALUE works correctly.

There is one final detail, an interaction with all-or-nothing recovery. High water
marks should be stored in volatile memory, so that following a crash (which has the effect

Saltzer & Kaashoek Ch. 9, p. 66	 June 24, 2009 12:26 am

9.4 Before-or-After Atomicity I: Concepts 9–67

of aborting all pending transactions) the high water marks automatically disappear and
thus don’t cause unnecessary aborts.

9.4.4 	Does Anyone Actually Use Version Histories for Before-or-After
Atomicity?

The answer is yes, but the most common use is in an application not likely to be encoun
tered by a software specialist. Legacy processor architectures typically provide a limited
number of registers (the “architectural registers”) in which the programmer can hold
temporary results, but modern large scale integration technology allows space on a phys
ical chip for many more physical registers than the architecture calls for. More registers
generally allow better performance, especially in multiple-issue processor designs, which
execute several sequential instructions concurrently whenever possible. To allow use of
the many physical registers, a register mapping scheme known as register renaming imple
ments a version history for the architectural registers. This version history allows
instructions that would interfere with each other only because of a shortage of registers
to execute concurrently.

For example, Intel Pentium processors, which are based on the x86 instruction set
architecture described in Section 5.7, have only eight architectural registers. The Pen
tium 4 has 128 physical registers, and a register renaming scheme based on a circular
reorder buffer. A reorder buffer resembles a direct hardware implementation of the pro
cedures NEW_VERSION and WRITE_VALUE of Figure 9.29. As each instruction issues (which
corresponds to BEGIN_TRANSACTION), it is assigned the next sequential slot in the reorder
buffer. The slot is a map that maintains a correspondence between two numbers: the
number of the architectural register that the programmer specified to hold the output
value of the instruction, and the number of one of the 128 physical registers, the one that
will actually hold that output value. Since machine instructions have just one output
value, assigning a slot in the reorder buffer implements in a single step the effect of both
NEW_OUTCOME_RECORD and NEW_VERSION. Similarly, when the instruction commits, it
places its output in that physical register, thereby implementing WRITE_VALUE and COMMIT

as a single step.
Figure 9.34 illustrates register renaming with a reorder buffer. In the program

sequence of that example, instruction n uses architectural register five to hold an output
value that instruction n + 1 will use as an input. Instruction n + 2 loads architectural reg
ister five from memory. Register renaming allows there to be two (or more) versions of
register five simultaneously, one version (in physical register 42) containing a value for
use by instructions n and n + 1 and the second version (in physical register 29) to be used
by instruction n + 2. The performance benefit is that instruction n + 2 (and any later
instructions that write into architectural register 5) can proceed concurrently with
instructions n and n + 1. An instruction following instruction n + 2 that requires the new
value in architectural register five as an input uses a hardware implementation of
READ_CURRENT_VALUE to locate the most recent preceding mapping of architectural register
five in the reorder buffer. In this case that most recent mapping is to physical register 29.

Saltzer & Kaashoek Ch. 9, p. 67	 June 24, 2009 12:26 am

9–68 CHAPTER 9 Atomicity: All-or-Nothing and Before-or-After

The later instruction then stalls, waiting for instruction n + 2 to write a value into phys
ical register 29. Later instructions that reuse architectural register five for some purpose
that does not require that version can proceed concurrently.

Although register renaming is conceptually straightforward, the mechanisms that pre
vent interference when there are dependencies between instructions tend to be more
intricate than either of the mark-point or read-capture disciplines, so this description has
been oversimplified. For more detail, the reader should consult a textbook on processor
architecture, for example Computer Architecture, a Quantitative Approach, by Hennessy
and Patterson [Suggestions for Further Reading 1.1.1].

The Oracle database management system offers several before-or-after atomicity
methods, one of which it calls “serializable”, though the label may be a bit misleading.
This method uses a before-or-after atomicity scheme that the database literature calls
snapshot isolation. The idea is that when a transaction begins the system conceptually
takes a snapshot of every committed value and the transaction reads all of its inputs from
that snapshot. If two concurrent transactions (which might start with the same snapshot)
modify the same variable, the first one to commit wins; the system aborts the other one
with a “serialization error”. This scheme effectively creates a limited variant of a version

architectural physical

physical register file
with 128 registers

FIGURE 9.34

n

n + 1

n + 2

R5

R4

R5

42

61

29

three entries in the reorder buffer

register registerinstruction 0

127

Example showing how a reorder buffer maps architectural register numbers to physical register
numbers. The program sequence corresponding to the three entries is:

n R5 ← R4 × R2 // Write a result in register five.
n + 1 R4 ← R5 + R1 // Use result in register five.
n + 2 R5 ← READ (117492) // Write content of a memory cell in register five.

Instructions n and n + 2 both write into register R5, so R5 has two versions, with mappings to
physical registers 42 and 29, respectively. Instruction n + 2 can thus execute concurrently with
instructions n and n + 1.

Saltzer & Kaashoek Ch. 9, p. 68 June 24, 2009 12:26 am

9.5 Before-or-After Atomicity II: Pragmatics 9–69

history that, in certain situations, does not always ensure that concurrent transactions are
correctly coordinated.

Another specialized variant implementation of version histories, known as transac
tional memory, is a discipline for creating atomic actions from arbitrary instruction
sequences that make multiple references to primary memory. Transactional memory was
first suggested in 1993 and with widespread availability of multicore processors, has
become the subject of quite a bit of recent research interest because it allows the applica
tion programmer to use concurrent threads without having to deal with locks. The
discipline is to mark the beginning of an instruction sequence that is to be atomic with
a “begin transaction” instruction, direct all ensuing STORE instructions to a hidden copy
of the data that concurrent threads cannot read, and at end of the sequence check to see
that nothing read or written during the sequence was modified by some other transaction
that committed first. If the check finds no such earlier modifications, the system com
mits the transaction by exposing the hidden copies to concurrent threads; otherwise it
discards the hidden copies and the transaction aborts. Because it defers all discovery of
interference to the commit point this discipline is even more optimistic than the read-
capture discipline described in Section 9.4.3 above, so it is most useful in situations
where interference between concurrent threads is possible but unlikely. Transactional
memory has been experimentally implemented in both hardware and software. Hard
ware implementations typically involve tinkering with either a cache or a reorder buffer
to make it defer writing hidden copies back to primary memory until commit time, while
software implementations create hidden copies of changed variables somewhere else in
primary memory. As with instruction renaming, this description of transactional mem
ory is somewhat oversimplified, and the interested reader should consult the literature
for fuller explanations.

Other software implementations of version histories for before-or-after atomicity
have been explored primarily in research environments. Designers of database systems
usually use locks rather than version histories because there is more experience in achiev
ing high performance with locks. Before-or-after atomicity by using locks systematically
is the subject of the next section of this chapter.

9.5 Before-or-After Atomicity II: Pragmatics
The previous section showed that a version history system that provides all-or-nothing
atomicity can be extended to also provide before-or-after atomicity. When the all-or
nothing atomicity design uses a log and installs data updates in cell storage, other, con
current actions can again immediately see those updates, so we again need a scheme to
provide before-or-after atomicity. When a system uses logs for all-or-nothing atomicity,
it usually adopts the mechanism introduced in Chapter 5—locks—for before-or-after
atomicity. However, as Chapter 5 pointed out, programming with locks is hazardous,
and the traditional programming technique of debugging until the answers seem to be
correct is unlikely to catch all locking errors. We now revisit locks, this time with the goal

Saltzer & Kaashoek Ch. 9, p. 69 June 24, 2009 12:26 am

9–70 CHAPTER 9 Atomicity: All-or-Nothing and Before-or-After

of using them in stylized ways that allow us to develop arguments that the locks correctly
implement before-or-after atomicity.

9.5.1 Locks

To review, a lock is a flag associated with a data object and set by an action to warn other,
concurrent, actions not to read or write the object. Conventionally, a locking scheme
involves two procedures:

ACQUIRE (A.lock)

marks a lock variable associated with object A as having been acquired. If the object is
already acquired, ACQUIRE waits until the previous acquirer releases it.

RELEASE (A.lock)

unmarks the lock variable associated with A, perhaps ending some other action’s wait for
that lock. For the moment, we assume that the semantics of a lock follow the single-
acquire protocol of Chapter 5: if two or more actions attempt to acquire a lock at about
the same time, only one will succeed; the others must find the lock already acquired. In
Section 9.5.4 we will consider some alternative protocols, for example one that permits
several readers of a variable as long as there is no one writing it.

The biggest problem with locks is that programming errors can create actions that do
not have the intended before-or-after property. Such errors can open the door to races
that, because the interfering actions are timing dependent, can make it extremely diffi
cult to figure out what went wrong. Thus a primary goal is that coordination of
concurrent transactions should be arguably correct. For locks, the way to achieve this
goal is to follow three steps systematically:

• 	Develop a locking discipline that specifies which locks must be acquired and
when.

• 	 Establish a compelling line of reasoning that concurrent transactions that follow
the discipline will have the before-or-after property.

• 	 Interpose a 	lock manager, a program that enforces the discipline, between the
programmer and the ACQUIRE and RELEASE procedures.

Many locking disciplines have been designed and deployed, including some that fail to
correctly coordinate transactions (for an example, see exercise 9.5). We examine three
disciplines that succeed. Each allows more concurrency than its predecessor, though even
the best one is not capable of guaranteeing that concurrency is maximized.

The first, and simplest, discipline that coordinates transactions correctly is the system-
wide lock. When the system first starts operation, it creates a single lockable variable
named, for example, System, in volatile memory. The discipline is that every transaction
must start with

Saltzer & Kaashoek Ch. 9, p. 70	 June 24, 2009 12:26 am

9.5 Before-or-After Atomicity II: Pragmatics 9–71

begin_transaction
ACQUIRE (System.lock)

…

and every transaction must end with
…

RELEASE (System.lock)

end_transaction

A system can even enforce this discipline by including the ACQUIRE and RELEASE steps in
the code sequence generated for begin_transaction and end_transaction, indepen
dent of whether the result was COMMIT or ABORT. Any programmer who creates a new
transaction then has a guarantee that it will run either before or after any other
transactions.

The systemwide lock discipline allows only one transaction to execute at a time. It
serializes potentially concurrent transactions in the order that they call ACQUIRE. The sys
temwide lock discipline is in all respects identical to the simple serialization discipline of
Section 9.4. In fact, the simple serialization pseudocode

id ← NEW_OUTCOME_RECORD ()

preceding_id ← id - 1

wait until preceding_id.outcome_record.value ≠ PENDING

…

COMMIT (id) [or ABORT (id)]

and the systemwide lock invocation

ACQUIRE (System.lock)

…

RELEASE (System.lock)

are actually just two implementations of the same idea.
As with simple serialization, systemwide locking restricts concurrency in cases where

it doesn’t need to because it locks all data touched by every transaction. For example, if
systemwide locking were applied to the funds TRANSFER program of Figure 9.16, only one
transfer could occur at a time, even though any individual transfer involves only two out
of perhaps several million accounts, so there would be many opportunities for concur
rent, non-interfering transfers. Thus there is an interest in developing less restrictive
locking disciplines. The starting point is usually to employ a finer lock granularity: lock
smaller objects, such as individual data records, individual pages of data records, or even
fields within records. The trade-offs in gaining concurrency are first, that when there is
more than one lock, more time is spent acquiring and releasing locks and second, cor
rectness arguments become more complex. One hopes that the performance gain from
concurrency exceeds the cost of acquiring and releasing the multiple locks. Fortunately,
there are at least two other disciplines for which correctness arguments are feasible, simple
locking and two-phase locking.

Saltzer & Kaashoek Ch. 9, p. 71 June 24, 2009 12:26 am

9–72 CHAPTER 9 Atomicity: All-or-Nothing and Before-or-After

9.5.2 Simple Locking

The second locking discipline, known as simple locking, is similar in spirit to, though not
quite identical with, the mark-point discipline. The simple locking discipline has two
rules. First, each transaction must acquire a lock for every shared data object it intends
to read or write before doing any actual reading and writing. Second, it may release its
locks only after the transaction installs its last update and commits or completely restores
the data and aborts. Analogous to the mark point, the transaction has what is called a lock
point: the first instant at which it has acquired all of its locks. The collection of locks it
has acquired when it reaches its lock point is called its lock set. A lock manager can enforce
simple locking by requiring that each transaction supply its intended lock set as an argu
ment to the begin_transaction operation, which acquires all of the locks of the lock set,
if necessary waiting for them to become available. The lock manager can also interpose
itself on all calls to read data and to log changes, to verify that they refer to variables that
are in the lock set. The lock manager also intercepts the call to commit or abort (or, if
the application uses roll-forward recovery, to log an END record) at which time it auto
matically releases all of the locks of the lock set.

The simple locking discipline correctly coordinates concurrent transactions. We can
make that claim using a line of argument analogous to the one used for correctness of the
mark-point discipline. Imagine that an all-seeing outside observer maintains an ordered
list to which it adds each transaction identifier as soon as the transaction reaches its lock
point and removes it from the list when it begins to release its locks. Under the simple
locking discipline each transaction has agreed not to read or write anything until that
transaction has been added to the observer’s list. We also know that all transactions that
precede this one in the list must have already passed their lock point. Since no data object
can appear in the lock sets of two transactions, no data object in any transaction’s lock
set appears in the lock set of the transaction preceding it in the list, and by induction to
any transaction earlier in the list. Thus all of this transaction’s input values are the same
as they will be when the preceding transaction in the list commits or aborts. The same
argument applies to the transaction before the preceding one, so all inputs to any trans
action are identical to the inputs that would be available if all the transactions ahead of
it in the list ran serially, in the order of the list. Thus the simple locking discipline ensures
that this transaction runs completely after the preceding one and completely before the
next one. Concurrent transactions will produce results as if they had been serialized in
the order that they reached their lock points.

As with the mark-point discipline, simple locking can miss some opportunities for
concurrency. In addition, the simple locking discipline creates a problem that can be sig
nificant in some applications. Because it requires the transaction to acquire a lock on
every shared object that it will either read or write (recall that the mark-point discipline
requires marking only of shared objects that the transaction will write), applications that
discover which objects need to be read by reading other shared data objects have no alter
native but to lock every object that they might need to read. To the extent that the set of
objects that an application might need to read is larger than the set for which it eventually

Saltzer & Kaashoek Ch. 9, p. 72 June 24, 2009 12:26 am

9.5 Before-or-After Atomicity II: Pragmatics 9–73

does read, the simple locking discipline can interfere with opportunities for concurrency.
On the other hand, when the transaction is straightforward (such as the TRANSFER trans
action of Figure 9.16, which needs to lock only two records, both of which are known at
the outset) simple locking can be effective.

9.5.3 Two-Phase Locking

The third locking discipline, called two-phase locking, like the read-capture discipline,
avoids the requirement that a transaction must know in advance which locks to acquire.
Two-phase locking is widely used, but it is harder to argue that it is correct. The two-
phase locking discipline allows a transaction to acquire locks as it proceeds, and the trans
action may read or write a data object as soon as it acquires a lock on that object. The
primary constraint is that the transaction may not release any locks until it passes its lock
point. Further, the transaction can release a lock on an object that it only reads any time
after it reaches its lock point if it will never need to read that object again, even to abort.
The name of the discipline comes about because the number of locks acquired by a trans
action monotonically increases up to the lock point (the first phase), after which it
monotonically decreases (the second phase). Just as with simple locking, two-phase lock
ing orders concurrent transactions so that they produce results as if they had been
serialized in the order they reach their lock points. A lock manager can implement two-
phase locking by intercepting all calls to read and write data; it acquires a lock (perhaps
having to wait) on the first use of each shared variable. As with simple locking, it then
holds the locks until it intercepts the call to commit, abort, or log the END record of the
transaction, at which time it releases them all at once.

The extra flexibility of two-phase locking makes it harder to argue that it guarantees
before-or-after atomicity. Informally, once a transaction has acquired a lock on a data
object, the value of that object is the same as it will be when the transaction reaches its
lock point, so reading that value now must yield the same result as waiting till then to
read it. Furthermore, releasing a lock on an object that it hasn’t modified must be harm
less if this transaction will never look at the object again, even to abort. A formal
argument that two-phase locking leads to correct before-or-after atomicity can be found
in most advanced texts on concurrency control and transactions. See, for example, Trans
action Processing, by Gray and Reuter [Suggestions for Further Reading 1.1.5].

The two-phase locking discipline can potentially allow more concurrency than the
simple locking discipline, but it still unnecessarily blocks certain serializable, and there
fore correct, action orderings. For example, suppose transaction T1 reads X and writes Y,
while transaction T2 just does a (blind) write to Y. Because the lock sets of T1 and T2
intersect at variable Y, the two-phase locking discipline will force transaction T2 to run
either completely before or completely after T1. But the sequence

T1: READ X

T2: WRITE Y

T1: WRITE Y

Saltzer & Kaashoek Ch. 9, p. 73 June 24, 2009 12:26 am

9–74 CHAPTER 9 Atomicity: All-or-Nothing and Before-or-After

in which the write of T2 occurs between the two steps of T1, yields the same result as
running T2 completely before T1, so the result is always correct, even though this
sequence would be prevented by two-phase locking. Disciplines that allow all possible
concurrency while at the same time ensuring before-or-after atomicity are quite difficult
to devise. (Theorists identify the problem as NP-complete.)

There are two interactions between locks and logs that require some thought: (1)
individual transactions that abort, and (2) system recovery. Aborts are the easiest to deal
with. Since we require that an aborting transaction restore its changed data objects to
their original values before releasing any locks, no special account need be taken of
aborted transactions. For purposes of before-or-after atomicity they look just like com
mitted transactions that didn’t change anything. The rule about not releasing any locks
on modified data before the end of the transaction is essential to accomplishing an abort.
If a lock on some modified object were released, and then the transaction decided to
abort, it might find that some other transaction has now acquired that lock and changed
the object again. Backing out an aborted change is likely to be impossible unless the locks
on modified objects have been held.

The interaction between log-based recovery and locks is less obvious. The question is
whether locks themselves are data objects for which changes should be logged. To ana
lyze this question, suppose there is a system crash. At the completion of crash recovery
there should be no pending transactions because any transactions that were pending at
the time of the crash should have been rolled back by the recovery procedure, and recov
ery does not allow any new transactions to begin until it completes. Since locks exist only
to coordinate pending transactions, it would clearly be an error if there were locks still
set when crash recovery is complete. That observation suggests that locks belong in vol
atile storage, where they will automatically disappear on a crash, rather than in non
volatile storage, where the recovery procedure would have to hunt them down to release
them. The bigger question, however, is whether or not the log-based recovery algorithm
will construct a correct system state—correct in the sense that it could have arisen from
some serial ordering of those transactions that committed before the crash.

Continue to assume that the locks are in volatile memory, and at the instant of a crash
all record of the locks is lost. Some set of transactions—the ones that logged a BEGIN

record but have not yet logged an END record—may not have been completed. But we
know that the transactions that were not complete at the instant of the crash had non-
overlapping lock sets at the moment that the lock values vanished. The recovery algo
rithm of Figure 9.23 will systematically UNDO or REDO installs for the incomplete
transactions, but every such UNDO or REDO must modify a variable whose lock was in some
transaction’s lock set at the time of the crash. Because those lock sets must have been
non-overlapping, those particular actions can safely be redone or undone without con
cern for before-or-after atomicity during recovery. Put another way, the locks created a
particular serialization of the transactions and the log has captured that serialization.
Since RECOVER performs UNDO actions in reverse order as specified in the log, and it per
forms REDO actions in forward order, again as specified in the log, RECOVER reconstructs
exactly that same serialization. Thus even a recovery algorithm that reconstructs the

Saltzer & Kaashoek Ch. 9, p. 74 June 24, 2009 12:26 am

9.5 Before-or-After Atomicity II: Pragmatics 9–75

entire database from the log is guaranteed to produce the same serialization as when the
transactions were originally performed. So long as no new transactions begin until recov
ery is complete, there is no danger of miscoordination, despite the absence of locks
during recovery.

9.5.4 Performance Optimizations

Most logging-locking systems are substantially more complex than the description so far
might lead one to expect. The complications primarily arise from attempts to gain per
formance. In Section 9.3.6 we saw how buffering of disk I/O in a volatile memory cache,
to allow reading, writing, and computation to go on concurrently, can complicate a log
ging system. Designers sometimes apply two performance-enhancing complexities to
locking systems: physical locking and adding lock compatibility modes.

A performance-enhancing technique driven by buffering of disk I/O and physical
media considerations is to choose a particular lock granularity known as physical locking.
If a transaction makes a change to a six-byte object in the middle of a 1000-byte disk
sector, or to a 1500-byte object that occupies parts of two disk sectors, there is a question
about which “variable” should be locked: the object, or the disk sector(s)? If two concur
rent threads make updates to unrelated data objects that happen to be stored in the same
disk sector, then the two disk writes must be coordinated. Choosing the right locking
granularity can make a big performance difference.

Locking application-defined objects without consideration of their mapping to phys
ical disk sectors is appealing because it is understandable to the application writer. For
that reason, it is usually called logical locking. In addition, if the objects are small, it appar
ently allows more concurrency: if another transaction is interested in a different object
that is in the same disk sector, it could proceed in parallel. However, a consequence of
logical locking is that logging must also be done on the same logical objects. Different
parts of the same disk sector may be modified by different transactions that are running
concurrently, and if one transaction commits but the other aborts neither the old nor the
new disk sector is the correct one to restore following a crash; the log entries must record
the old and new values of the individual data objects that are stored in the sector. Finally,
recall that a high-performance logging system with a cache must, at commit time, force
the log to disk and keep track of which objects in the cache it is safe to write to disk with
out violating the write-ahead log protocol. So logical locking with small objects can
escalate cache record-keeping.

Backing away from the details, high-performance disk management systems typically
require that the argument of a PUT call be a block whose size is commensurate with the
size of a disk sector. Thus the real impact of logical locking is to create a layer between
the application and the disk management system that presents a logical, rather than a
physical, interface to its transaction clients; such things as data object management and
garbage collection within disk sectors would go into this layer. The alternative is to tailor
the logging and locking design to match the native granularity of the disk management
system. Since matching the logging and locking granularity to the disk write granularity

Saltzer & Kaashoek Ch. 9, p. 75 June 24, 2009 12:26 am

9–76 CHAPTER 9 Atomicity: All-or-Nothing and Before-or-After

can reduce the number of disk operations, both logging changes to and locking blocks
that correspond to disk sectors rather than individual data objects is a common practice.

Another performance refinement appears in most locking systems: the specification
of lock compatibility modes. The idea is that when a transaction acquires a lock, it can
specify what operation (for example, READ or WRITE) it intends to perform on the locked
data item. If that operation is compatible—in the sense that the result of concurrent
transactions is the same as some serial ordering of those transactions—then this transac
tion can be allowed to acquire a lock even though some other transaction has already
acquired a lock on that same data object.

The most common example involves replacing the single-acquire locking protocol
with the multiple-reader, single-writer protocol. According to this protocol, one can allow
any number of readers to simultaneously acquire read-mode locks for the same object.
The purpose of a read-mode lock is to ensure that no other thread can change the data
while the lock is held. Since concurrent readers do not present an update threat, it is safe
to allow any number of them. If another transaction needs to acquire a write-mode lock
for an object on which several threads already hold read-mode locks, that new transaction
will have to wait for all of the readers to release their read-mode locks. There are many
applications in which a majority of data accesses are for reading, and for those applica
tions the provision of read-mode lock compatibility can reduce the amount of time spent
waiting for locks by orders of magnitude. At the same time, the scheme adds complexity,
both in the mechanics of locking and also in policy issues, such as what to do if, while a
prospective writer is waiting for readers to release their read-mode locks, another thread
calls to acquire a read-mode lock. If there is a steady stream of arriving readers, a writer
could be delayed indefinitely.

This description of performance optimizations and their complications is merely
illustrative, to indicate the range of opportunities and kinds of complexity that they
engender; there are many other performance-enhancement techniques, some of which
can be effective, and others that are of dubious value; most have different values depend
ing on the application. For example, some locking disciplines compromise before-or
after atomicity by allowing transactions to read data values that are not yet committed.
As one might expect, the complexity of reasoning about what can or cannot go wrong in
such situations escalates. If a designer intends to implement a system using performance
enhancements such as buffering, lock compatibility modes, or compromised before-or
after atomicity, it would be advisable to study carefully the book by Gray and Reuter, as
well as existing systems that implement similar enhancements.

9.5.5 Deadlock; Making Progress

Section 5.2.5 of Chapter 5 introduced the emergent problem of deadlock, the wait-for
graph as a way of analyzing deadlock, and lock ordering as a way of preventing deadlock.
With transactions and the ability to undo individual actions or even abort a transaction
completely we now have more tools available to deal with deadlock, so it is worth revis
iting that discussion.

Saltzer & Kaashoek Ch. 9, p. 76 June 24, 2009 12:26 am

9.5 Before-or-After Atomicity II: Pragmatics 9–77

The possibility of deadlock is an inevitable consequence of using locks to coordinate
concurrent activities. Any number of concurrent transactions can get hung up in a dead
lock, either waiting for one another, or simply waiting for a lock to be released by some
transaction that is already deadlocked. Deadlock leaves us a significant loose end: cor
rectness arguments ensure us that any transactions that complete will produce results as
though they were run serially, but they say nothing about whether or not any transaction
will ever complete. In other words, our system may ensure correctness, in the sense that
no wrong answers ever come out, but it does not ensure progress—no answers may come
out at all.

As with methods for concurrency control, methods for coping with deadlock can also
be described as pessimistic or optimistic. Pessimistic methods take a priori action to pre
vent deadlocks from happening. Optimistic methods allow concurrent threads to
proceed, detect deadlocks if they happen, and then take action to fix things up. Here are
some of the most popular methods:

1. 	Lock ordering (pessimistic). As suggested in Chapter 5, number the locks uniquely,
and require that transactions acquire locks in ascending numerical order. With this
plan, when a transaction encounters an already-acquired lock, it is always safe to
wait for it, since the transaction that previously acquired it cannot be waiting for
any locks that this transaction has already acquired—all those locks are lower in
number than this one. There is thus a guarantee that somewhere, at least one
transaction (the one holding the highest-numbered lock) can always make
progress. When that transaction finishes, it will release all of its locks, and some
other transaction will become the one that is guaranteed to be able to make
progress. A generalization of lock ordering that may eliminate some unnecessary
waits is to arrange the locks in a lattice and require that they be acquired in some
lattice traversal order. The trouble with lock ordering, as with simple locking, is
that some applications may not be able to predict all of the locks they need before
acquiring the first one.

2. 	Backing out (optimistic): An elegant strategy devised by Andre Bensoussan in 1966
allows a transaction to acquire locks in any order, but if it encounters an already-
acquired lock with a number lower than one it has previously acquired itself, the
transaction must back up (in terms of this chapter, UNDO previous actions) just far
enough to release its higher-numbered locks, wait for the lower-numbered lock to
become available, acquire that lock, and then REDO the backed-out actions.

3. 	Timer expiration (optimistic). When a new transaction begins, the lock manager
sets an interrupting timer to a value somewhat greater than the time it should take
for the transaction to complete. If a transaction gets into a deadlock, its timer will
expire, at which point the system aborts that transaction, rolling back its changes
and releasing its locks in the hope that the other transactions involved in the
deadlock may be able to proceed. If not, another one will time out, releasing
further locks. Timing out deadlocks is effective, though it has the usual defect: it

Saltzer & Kaashoek Ch. 9, p. 77	 June 24, 2009 12:26 am

9–78 CHAPTER 9 Atomicity: All-or-Nothing and Before-or-After

is difficult to choose a suitable timer value that keeps things moving along but also
accommodates normal delays and variable operation times. If the environment or
system load changes, it may be necessary to readjust all such timer values, an
activity that can be a real nuisance in a large system.

4. 	Cycle detection (optimistic). Maintain, in the lock manager, a wait-for graph (as
described in Section 5.2.5) that shows which transactions have acquired which
locks and which transactions are waiting for which locks. Whenever another
transaction tries to acquire a lock, finds it is already locked, and proposes to wait,
the lock manager examines the graph to see if waiting would produce a cycle, and
thus a deadlock. If it would, the lock manager selects some cycle member to be a
victim, and unilaterally aborts that transaction, so that the others may continue.
The aborted transaction then retries in the hope that the other transactions have
made enough progress to be out of the way and another deadlock will not occur.

When a system uses lock ordering, backing out, or cycle detection, it is common to also
set a timer as a safety net because a hardware failure or a programming error such as an
endless loop can create a progress-blocking situation that none of the deadlock detection
methods can catch.

Since a deadlock detection algorithm can introduce an extra reason to abort a trans
action, one can envision pathological situations where the algorithm aborts every
attempt to perform some particular transaction, no matter how many times its invoker
retries. Suppose, for example, that two threads named Alphonse and Gaston get into a
deadlock trying to acquire locks for two objects named Apple and Banana: Alphonse
acquires the lock for Apple, Gaston acquires the lock for Banana, Alphonse tries to
acquire the lock for Banana and waits, then Gaston tries to acquire the lock for Apple
and waits, creating the deadlock. Eventually, Alphonse times out and begins rolling back
updates in preparation for releasing locks. Meanwhile, Gaston times out and does the
same thing. Both restart, and they get into another deadlock, with their timers set to
expire exactly as before, so they will probably repeat the sequence forever. Thus we still
have no guarantee of progress. This is the emergent property that Chapter 5 called live-
lock, since formally no deadlock ever occurs and both threads are busy doing something
that looks superficially useful.

One way to deal with livelock is to apply a randomized version of a technique familiar
from Chapter 7[on-line]: exponential random backoff. When a timer expiration leads to
an abort, the lock manager, after clearing the locks, delays that thread for a random
length of time, chosen from some starting interval, in the hope that the randomness will
change the relative timing of the livelocked transactions enough that on the next try one
will succeed and then the other can then proceed without interference. If the transaction
again encounters interference, it tries again, but on each retry not only does the lock
manager choose a new random delay, but it also increases the interval from which the
delay is chosen by some multiplicative constant, typically 2. Since on each retry there is
an increased probability of success, one can push this probability as close to unity as
desired by continued retries, with the expectation that the interfering transactions will

Saltzer & Kaashoek Ch. 9, p. 78	 June 24, 2009 12:26 am

9.6 Atomicity across Layers and Multiple Sites 9–79

eventually get out of one another’s way. A useful property of exponential random backoff
is that if repeated retries continue to fail it is almost certainly an indication of some
deeper problem—perhaps a programming mistake or a level of competition for shared
variables that is intrinsically so high that the system should be redesigned.

The design of more elaborate algorithms or programming disciplines that guarantee
progress is a project that has only modest potential payoff, and an end-to-end argument
suggests that it may not be worth the effort. In practice, systems that would have frequent
interference among transactions are not usually designed with a high degree of concur
rency anyway. When interference is not frequent, simple techniques such as safety-net
timers and exponential random backoff not only work well, but they usually must be
provided anyway, to cope with any races or programming errors such as endless loops
that may have crept into the system design or implementation. Thus a more complex
progress-guaranteeing discipline is likely to be redundant, and only rarely will it get a
chance to promote progress.

9.6 Atomicity across Layers and Multiple Sites
There remain some important gaps in our exploration of atomicity. First, in a layered
system, a transaction implemented in one layer may consist of a series of component
actions of a lower layer that are themselves atomic. The question is how the commitment
of the lower-layer transactions should relate to the commitment of the higher layer trans
action. If the higher-layer transaction decides to abort, the question is what to do about
lower-layer transactions that may have already committed. There are two possibilities:

• 	Reverse the effect of any committed lower-layer transactions with an UNDO

action. This technique requires that the results of the lower-layer transactions be
visible only within the higher-layer transaction.

• 	Somehow delay commitment of the lower-layer transactions and arrange that
they actually commit at the same time that the higher-layer transaction commits.

Up to this point, we have assumed the first possibility. In this section we explore the sec
ond one.

Another gap is that, as described so far, our techniques to provide atomicity all
involve the use of shared variables in memory or storage (for example, pointers to the lat
est version, outcome records, logs, and locks) and thus implicitly assume that the
composite actions that make up a transaction all occur in close physical proximity. When
the composing actions are physically separated, communication delay, communication
reliability, and independent failure make atomicity both more important and harder to
achieve.

We will edge up on both of these problems by first identifying a common subprob
lem: implementing nested transactions. We will then extend the solution to the nested
transaction problem to create an agreement protocol, known as two-phase commit, that

Saltzer & Kaashoek Ch. 9, p. 79	 June 24, 2009 12:26 am

9–80 CHAPTER 9 Atomicity: All-or-Nothing and Before-or-After

FIGURE 9.35

procedure PAY_INTEREST (reference account)
if account.balance > 0 then

interest = account.balance * 0.05
TRANSFER (bank, account, interest)

else
interest = account.balance * 0.15
TRANSFER (account, bank, interest)

procedure MONTH_END_INTEREST:()
for A ← each customer_account do

PAY_INTEREST (A)

An example of two procedures, one of which calls the other, yet each should be individually
atomic.

coordinates commitment of lower-layer transactions. We can then extend the two-phase
commit protocol, using a specialized form of remote procedure call, to coordinate steps
that must be carried out at different places. This sequence is another example of boot
strapping; the special case that we know how to handle is the single-site transaction and
the more general problem is the multiple-site transaction. As an additional observation,
we will discover that multiple-site transactions are quite similar to, but not quite the
same as, the dilemma of the two generals.

9.6.1 Hierarchical Composition of Transactions

We got into the discussion of transactions by considering that complex interpreters are
engineered in layers, and that each layer should implement atomic actions for its next-
higher, client layer. Thus transactions are nested, each one typically consisting of multi
ple lower-layer transactions. This nesting requires that some additional thought be given
to the mechanism of achieving atomicity.

Consider again a banking example. Suppose that the TRANSFER procedure of Section
9.1.5 is available for moving funds from one account to another, and it has been imple
mented as a transaction. Suppose now that we wish to create the two application
procedures of Figure 9.35. The first procedure, PAY_INTEREST, invokes TRANSFER to move
an appropriate amount of money from or to an internal account named bank, the direc
tion and rate depending on whether the customer account balance is positive or negative.
The second procedure, MONTH_END_INTEREST, fulfills the bank’s intention to pay (or
extract) interest every month on every customer account by iterating through the
accounts and invoking PAY_INTEREST on each one.

It would probably be inappropriate to have two invocations of MONTH_END_INTEREST

running at the same time, but it is likely that at the same time that MONTH_END_INTEREST

is running there are other banking activities in progress that are also invoking TRANSFER.

Saltzer & Kaashoek Ch. 9, p. 80 June 24, 2009 12:26 am

9.6 Atomicity across Layers and Multiple Sites 9–81

It is also possible that the for each statement inside MONTH_END_INTEREST actually runs
several instances of its iteration (and thus of PAY_INTEREST) concurrently. Thus we have a
need for three layers of transactions. The lowest layer is the TRANSFER procedure, in which
debiting of one account and crediting of a second account must be atomic. At the next
higher layer, the procedure PAY_INTEREST should be executed atomically, to ensure that
some concurrent TRANSFER transaction doesn’t change the balance of the account between
the positive/negative test and the calculation of the interest amount. Finally, the proce
dure MONTH_END_INTEREST should be a transaction, to ensure that some concurrent
TRANSFER transaction does not move money from an account A to an account B between
the interest-payment processing of those two accounts, since such a transfer could cause
the bank to pay interest twice on the same funds. Structurally, an invocation of the TRANS

FER procedure is nested inside PAY_INTEREST, and one or more concurrent invocations of
PAY_INTEREST are nested inside MONTH_END_INTEREST.

The reason nesting is a potential problem comes from a consideration of the commit
steps of the nested transactions. For example, the commit point of the TRANSFER transac
tion would seem to have to occur either before or after the commit point of the
PAY_INTEREST transaction, depending on where in the programming of PAY_INTEREST we
place its commit point. Yet either of these positions will cause trouble. If the TRANSFER

commit occurs in the pre-commit phase of PAY_INTEREST then if there is a system crash
PAY_INTEREST will not be able to back out as though it hadn’t tried to operate because the
values of the two accounts that TRANSFER changed may have already been used by concur
rent transactions to make payment decisions. But if the TRANSFER commit does not occur
until the post-commit phase of PAY_INTEREST, there is a risk that the transfer itself can not
be completed, for example because one of the accounts is inaccessible. The conclusion is
that somehow the commit point of the nested transaction should coincide with the com
mit point of the enclosing transaction. A slightly different coordination problem applies
to MONTH_END_INTEREST: no TRANSFERs by other transactions should occur while it runs
(that is, it should run either before or after any concurrent TRANSFER transactions), but it
must be able to do multiple TRANSFERs itself, each time it invokes PAY_INTEREST, and its own
possibly concurrent transfer actions must be before-or-after actions, since they all involve
the account named “bank”.

Suppose for the moment that the system provides transactions with version histories.
We can deal with nesting problems by extending the idea of an outcome record: we allow
outcome records to be organized hierarchically. Whenever we create a nested transaction,
we record in its outcome record both the initial state (PENDING) of the new transaction and
the identifier of the enclosing transaction. The resulting hierarchical arrangement of out
come records then exactly reflects the nesting of the transactions. A top-layer outcome
record would contain a flag to indicate that it is not nested inside any other transaction.
When an outcome record contains the identifier of a higher-layer transaction, we refer
to it as a dependent outcome record, and the record to which it refers is called its superior.

The transactions, whether nested or enclosing, then go about their business, and
depending on their success mark their own outcome records COMMITTED or ABORTED, as
usual. However, when READ_CURRENT_VALUE (described in Section 9.4.2) examines the sta-

Saltzer & Kaashoek Ch. 9, p. 81 June 24, 2009 12:26 am

9–82 CHAPTER 9 Atomicity: All-or-Nothing and Before-or-After

tus of a version to see whether or not the transaction that created it is COMMITTED, it must
additionally check to see if the outcome record contains a reference to a superior out
come record. If so, it must follow the reference and check the status of the superior. If
that record says that it, too, is COMMITTED, it must continue following the chain upward,
if necessary all the way to the highest-layer outcome record. The transaction in question
is actually COMMITTED only if all the records in the chain are in the COMMITTED state. If any
record in the chain is ABORTED, this transaction is actually ABORTED, despite the COMMITTED

claim in its own outcome record. Finally, if neither of those situations holds, then there
must be one or more records in the chain that are still PENDING. The outcome of this trans
action remains PENDING until those records become COMMITTED or ABORTED. Thus the
outcome of an apparently-COMMITTED dependent outcome record actually depends on the
outcomes of all of its ancestors. We can describe this situation by saying that, until all its
ancestors commit, this lower-layer transaction is sitting on a knife-edge, at the point of
committing but still capable of aborting if necessary. For purposes of discussion we will
identify this situation as a distinct virtual state of the outcome record and the transaction,
by saying that the transaction is tentatively committed.

This hierarchical arrangement has several interesting programming consequences. If
a nested transaction has any post-commit steps, those steps cannot proceed until all of
the hierarchically higher transactions have committed. For example, if one of the nested
transactions opens a cash drawer when it commits, the sending of the release message to
the cash drawer must somehow be held up until the highest-layer transaction determines
its outcome.

This output visibility consequence is only one example of many relating to the tenta
tively committed state. The nested transaction, having declared itself tentatively
committed, has renounced the ability to abort—the decision is in someone else’s hands.
It must be able to run to completion or to abort, and it must be able to maintain the ten
tatively committed state indefinitely. Maintaining the ability to go either way can be
awkward, since the transaction may be holding locks, keeping pages in memory or tapes
mounted, or reliably holding on to output messages. One consequence is that a designer
cannot simply take any arbitrary transaction and blindly use it as a nested component of
a larger transaction. At the least, the designer must review what is required for the nested
transaction to maintain the tentatively committed state.

Another, more complex, consequence arises when one considers possible interactions
among different transactions that are nested within the same higher-layer transaction.
Consider our earlier example of TRANSFER transactions that are nested inside PAY_INTEREST,
which in turn is nested inside MONTH_END_INTEREST. Suppose that the first time that
MONTH_END_INTEREST invokes PAY_INTEREST, that invocation commits, thus moving into the
tentatively committed state, pending the outcome of MONTH_END_INTEREST. Then
MONTH_END_INTEREST invokes PAY_INTEREST on a second bank account. PAY_INTEREST needs
to be able to read as input data the value of the bank’s own interest account, which is a
pending result of the previous, tentatively COMMITTED, invocation of PAY_INTEREST. The
READ_CURRENT_VALUE algorithm, as implemented in Section 9.4.2, doesn’t distinguish
between reads arising within the same group of nested transactions and reads from some

Saltzer & Kaashoek Ch. 9, p. 82 June 24, 2009 12:26 am

9.6 Atomicity across Layers and Multiple Sites 9–83

completely unrelated transaction. Figure 9.36 illustrates the situation. If the test in
READ_CURRENT_VALUE for committed values is extended by simply following the ancestry of
the outcome record controlling the latest version, it will undoubtedly force the second
invocation of PAY_INTEREST to wait pending the final outcome of the first invocation of
PAY_INTEREST. But since the outcome of that first invocation depends on the outcome of

MONTH_END_INTEREST

outcome:

superior:

PENDING

outcome:

superior:

PAY_INTEREST1 (1st invocation)

COMMITTED

MONTH_END_INTEREST

outcome:

superior:

TRANSFER1

COMMITTED

PAY_INTEREST1

OK for TRANSFER2

none

outcome:

superior:

PAY_INTEREST2 (2nd invocation)

PENDING

MONTH_END_INTEREST

outcome:

superior:

TRANSFER2

PENDING

PAY_INTEREST2

to read?

creator: TRANSFER1

newest version of
account bank

FIGURE 9.36

Transaction TRANSFER2, nested in transaction PAY_INTEREST2, which is nested in transaction
MONTH_END_INTEREST, wants to read the current value of account bank. But bank was last writ
ten by transaction TRANSFER1, which is nested in COMMITTED transaction PAY_INTEREST1, which is
nested in still-PENDING transaction MONTH_END_INTEREST. Thus this version of bank is actually
PENDING, rather than COMMITTED as one might conclude by looking only at the outcome of
TRANSFER1. However, TRANSFER1 and TRANSFER2 share a common ancestor (namely,
MONTH_END_INTEREST), and the chain of transactions leading from bank to that common ances
tor is completely committed, so the read of bank can—and to avoid a deadlock, must—be
allowed.

Saltzer & Kaashoek Ch. 9, p. 83 June 24, 2009 12:26 am

9–84 CHAPTER 9 Atomicity: All-or-Nothing and Before-or-After

MONTH_END_INTEREST, and the outcome of MONTH_END_INTEREST currently depends on the
success of the second invocation of PAY_INTEREST, we have a built-in cycle of waits that at
best can only time out and abort.

Since blocking the read would be a mistake, the question of when it might be OK to
permit reading of data values created by tentatively COMMITTED transactions requires some
further thought. The before-or-after atomicity requirement is that no update made by a
tentatively COMMITTED transaction should be visible to any transaction that would survive
if for some reason the tentatively COMMITTED transaction ultimately aborts. Within that
constraint, updates of tentatively COMMITTED transactions can freely be passed around. We
can achieve that goal in the following way: compare the outcome record ancestry of the
transaction doing the read with the ancestry of the outcome record that controls the ver
sion to be read. If these ancestries do not merge (that is, there is no common ancestor)
then the reader must wait for the version’s ancestry to be completely committed. If they
do merge and all the transactions in the ancestry of the data version that are below the
point of the merge are tentatively committed, no wait is necessary. Thus, in Figure 9.36,
MONTH_END_INTEREST might be running the two (or more) invocations of PAY_INTEREST con
currently. Each invocation will call CREATE_NEW_VERSION as part of its plan to update the
value of account “bank”, thereby establishing a serial order of the invocations. When
later invocations of PAY_INTEREST call READ_CURRENT_VALUE to read the value of account
“bank”, they will be forced to wait until all earlier invocations of PAY_INTEREST decide
whether to commit or abort.

9.6.2 Two-Phase Commit

Since a higher-layer transaction can comprise several lower-layer transactions, we can
describe the commitment of a hierarchical transaction as involving two distinct phases.
In the first phase, known variously as the preparation or voting phase, the higher-layer
transaction invokes some number of distinct lower-layer transactions, each of which
either aborts or, by committing, becomes tentatively committed. The top-layer transac
tion evaluates the situation to establish that all (or enough) of the lower-layer
transactions are tentatively committed that it can declare the higher-layer transaction a
success.

Based on that evaluation, it either COMMITs or ABORTs the higher-layer transaction.
Assuming it decides to commit, it enters the second, commitment phase, which in the
simplest case consists of simply changing its own state from PENDING to COMMITTED or
ABORTED. If it is the highest-layer transaction, at that instant all of the lower-layer tenta
tively committed transactions also become either COMMITTED or ABORTED. If it is itself
nested in a still higher-layer transaction, it becomes tentatively committed and its com
ponent transactions continue in the tentatively committed state also. We are
implementing here a coordination protocol known as two-phase commit. When we
implement multiple-site atomicity in the next section, the distinction between the two
phases will take on additional clarity.

Saltzer & Kaashoek Ch. 9, p. 84 June 24, 2009 12:26 am

9.6 Atomicity across Layers and Multiple Sites 9–85

If the system uses version histories for atomicity, the hierarchy of Figure 9.36 can be
directly implemented by linking outcome records. If the system uses logs, a separate table
of pending transactions can contain the hierarchy, and inquiries about the state of a
transaction would involve examining this table.

The concept of nesting transactions hierarchically is useful in its own right, but our
particular interest in nesting is that it is the first of two building blocks for multiple-site
transactions. To develop the second building block, we next explore what makes multi
ple-site transactions different from single-site transactions.

9.6.3 Multiple-Site Atomicity: Distributed Two-Phase Commit

If a transaction requires executing component transactions at several sites that are sepa
rated by a best-effort network, obtaining atomicity is more difficult because any of the
messages used to coordinate the transactions of the various sites can be lost, delayed, or
duplicated. In Chapter 4 we learned of a method, known as Remote Procedure Call
(RPC) for performing an action at another site. In Chapter 7[on-line] we learned how
to design protocols such as RPC with a persistent sender to ensure at-least-once execu
tion and duplicate suppression to ensure at-most-once execution. Unfortunately, neither
of these two assurances is exactly what is needed to ensure atomicity of a multiple-site
transaction. However, by properly combining a two-phase commit protocol with persis
tent senders, duplicate suppression, and single-site transactions, we can create a correct
multiple-site transaction. We assume that each site, on its own, is capable of implement
ing local transactions, using techniques such as version histories or logs and locks for all-
or-nothing atomicity and before-or-after atomicity. Correctness of the multiple-site ato
micity protocol will be achieved if all the sites commit or if all the sites abort; we will have
failed if some sites commit their part of a multiple-site transaction while others abort
their part of that same transaction.

Suppose the multiple-site transaction consists of a coordinator Alice requesting com
ponent transactions X, Y, and Z of worker sites Bob, Charles, and Dawn, respectively.
The simple expedient of issuing three remote procedure calls certainly does not produce
a transaction for Alice because Bob may do X while Charles may report that he cannot
do Y. Conceptually, the coordinator would like to send three messages, to the three
workers, like this one to Bob:

From: Alice

To: Bob

Re: my transaction 91

if (Charles does Y and Dawn does Z) then do X, please.

and let the three workers handle the details. We need some clue how Bob could accom
plish this strange request.

The clue comes from recognizing that the coordinator has created a higher-layer
transaction and each of the workers is to perform a transaction that is nested in the
higher-layer transaction. Thus, what we need is a distributed version of the two-phase
commit protocol. The complication is that the coordinator and workers cannot reliably

Saltzer & Kaashoek Ch. 9, p. 85 June 24, 2009 12:26 am

9–86 CHAPTER 9 Atomicity: All-or-Nothing and Before-or-After

communicate. The problem thus reduces to constructing a reliable distributed version of
the two-phase commit protocol. We can do that by applying persistent senders and
duplicate suppression.

Phase one of the protocol starts with coordinator Alice creating a top-layer outcome
record for the overall transaction. Then Alice begins persistently sending to Bob an RPC-
like message:

From:Alice

To: Bob

Re: my transaction 271

Please do X as part of my transaction.

Similar messages go from Alice to Charles and Dawn, also referring to transaction 271,
and requesting that they do Y and Z, respectively. As with an ordinary remote procedure
call, if Alice doesn’t receive a response from one or more of the workers in a reasonable
time she resends the message to the non-responding workers as many times as necessary
to elicit a response.

A worker site, upon receiving a request of this form, checks for duplicates and then
creates a transaction of its own, but it makes the transaction a nested one, with its superior
being Alice’s original transaction. It then goes about doing the pre-commit part of the
requested action, reporting back to Alice that this much has gone well:

From:Bob

To: Alice

Re: your transaction 271

My part X is ready to commit.

Alice, upon collecting a complete set of such responses then moves to the two-phase
commit part of the transaction, by sending messages to each of Bob, Charles, and Dawn
saying, e.g.:

Two-phase-commit message #1:

From:Alice

To: Bob

Re: my transaction 271

PREPARE to commit X.

Bob, upon receiving this message, commits—but only tentatively—or aborts. Having
created durable tentative versions (or logged to journal storage its planned updates) and
having recorded an outcome record saying that it is PREPARED either to commit or abort,
Bob then persistently sends a response to Alice reporting his state:

Saltzer & Kaashoek Ch. 9, p. 86 June 24, 2009 12:26 am

9.6 Atomicity across Layers and Multiple Sites 9–87

Two-phase-commit message #2:

From:Bob
To:Alice
Re: your transaction 271

I am PREPARED to commit my part. Have you decided to commit yet? Regards.

or alternatively, a message reporting it has aborted. If Bob receives a duplicate request
from Alice, his persistent sender sends back a duplicate of the PREPARED or ABORTED

response.
At this point Bob, being in the PREPARED state, is out on a limb. Just as in a local hier

archical nesting, Bob must be able either to run to the end or to abort, to maintain that
state of preparation indefinitely, and wait for someone else (Alice) to say which. In addi
tion, the coordinator may independently crash or lose communication contact,
increasing Bob’s uncertainty. If the coordinator goes down, all of the workers must wait
until it recovers; in this protocol, the coordinator is a single point of failure.

As coordinator, Alice collects the response messages from her several workers (perhaps
re-requesting PREPARED responses several times from some worker sites). If all workers
send PREPARED messages, phase one of the two-phase commit is complete. If any worker
responds with an abort message, or doesn’t respond at all, Alice has the usual choice of
aborting the entire transaction or perhaps trying a different worker site to carry out that
component transaction. Phase two begins when Alice commits the entire transaction by
marking her own outcome record COMMITTED.

Once the higher-layer outcome record is marked as COMMITTED or ABORTED, Alice sends
a completion message back to each of Bob, Charles, and Dawn:

Two-phase-commit message #3

From:Alice
To:Bob
Re: my transaction 271

My transaction committed. Thanks for your help.

Each worker site, upon receiving such a message, changes its state from PREPARED to COM

MITTED, performs any needed post-commit actions, and exits. Meanwhile, Alice can go
about other business, with one important requirement for the future: she must remem
ber, reliably and for an indefinite time, the outcome of this transaction. The reason is
that one or more of her completion messages may have been lost. Any worker sites that
are in the PREPARED state are awaiting the completion message to tell them which way to
go. If a completion message does not arrive in a reasonable period of time, the persistent
sender at the worker site will resend its PREPARED message. Whenever Alice receives a
duplicate PREPARED message, she simply sends back the current state of the outcome
record for the named transaction.

If a worker site that uses logs and locks crashes, the recovery procedure at that site has
to take three extra steps. First, it must classify any PREPARED transaction as a tentative win
ner that it should restore to the PREPARED state. Second, if the worker is using locks for

Saltzer & Kaashoek Ch. 9, p. 87 June 24, 2009 12:26 am

9–88 CHAPTER 9 Atomicity: All-or-Nothing and Before-or-After

before-or-after atomicity, the recovery procedure must reacquire any locks the PREPARED

transaction was holding at the time of the failure. Finally, the recovery procedure must
restart the persistent sender, to learn the current status of the higher-layer transaction. If
the worker site uses version histories, only the last step, restarting the persistent sender,
is required.

Since the workers act as persistent senders of their PREPARED messages, Alice can be
confident that every worker will eventually learn that her transaction committed. But
since the persistent senders of the workers are independent, Alice has no way of ensuring
that they will act simultaneously. Instead, Alice can only be certain of eventual comple
tion of her transaction. This distinction between simultaneous action and eventual
action is critically important, as will soon be seen.

If all goes well, two-phase commit of N worker sites will be accomplished in 3N mes
sages, as shown in Figure 9.37: for each worker site a PREPARE message, a PREPARED message
in response, and a COMMIT message. This 3N message protocol is complete and sufficient,
although there are several variations one can propose.

An example of a simplifying variation is that the initial RPC request and response
could also carry the PREPARE and PREPARED messages, respectively. However, once a worker
sends a PREPARED message, it loses the ability to unilaterally abort, and it must remain on
the knife edge awaiting instructions from the coordinator. To minimize this wait, it is
usually preferable to delay the PREPARE/PREPARED message pair until the coordinator knows
that the other workers seem to be in a position to do their parts.

Some versions of the distributed two-phase commit protocol have a fourth acknowl
edgment message from the worker sites to the coordinator. The intent is to collect a
complete set of acknowledgment messages—the coordinator persistently sends comple
tion messages until every site acknowledges. Once all acknowledgments are in, the
coordinator can then safely discard its outcome record, since every worker site is known
to have gotten the word.

A system that is concerned both about outcome record storage space and the cost of
extra messages can use a further refinement, called presumed commit. Since one would
expect that most transactions commit, we can use a slightly odd but very space-efficient
representation for the value COMMITTED of an outcome record: non-existence. The coordi
nator answers any inquiry about a non-existent outcome record by sending a COMMITTED

response. If the coordinator uses this representation, it commits by destroying the out
come record, so a fourth acknowledgment message from every worker is unnecessary. In
return for this apparent magic reduction in both message count and space, we notice that
outcome records for aborted transactions can not easily be discarded because if an
inquiry arrives after discarding, the inquiry will receive the response COMMITTED. The coor
dinator can, however, persistently ask for acknowledgment of aborted transactions, and
discard the outcome record after all these acknowledgments are in. This protocol that
leads to discarding an outcome record is identical to the protocol described in Chapter
7[on-line] to close a stream and discard the record of that stream.

Distributed two-phase commit does not solve all multiple-site atomicity problems.
For example, if the coordinator site (in this case, Alice) is aboard a ship that sinks after

Saltzer & Kaashoek Ch. 9, p. 88 June 24, 2009 12:26 am

9.6 Atomicity across Layers and Multiple Sites 9–89

Coordinator Worker Worker Worker

Alice Bob Charles Dawn

PREPARE X

PREPARE Y

PREPARE Z

Bob is PREPARED to

Charles is PREPARED to commit or abort

Dawn is PREPARED to commit or abort

COMMIT

COMMIT

COMMIT

Time

commit or abort

log BEGIN

log

log BEGIN

log PREPARED

log COMMITTED

COMMITTED

FIGURE 9.37

Timing diagram for distributed two-phase commit, using 3N messages. (The initial RPC
request and response messages are not shown.) Each of the four participants maintains its
own version history or recovery log. The diagram shows log entries made by the coordinator
and by one of the workers.

sending the PREPARE message but before sending the COMMIT or ABORT message the worker
sites are in left in the PREPARED state with no way to proceed. Even without that concern,
Alice and her co-workers are standing uncomfortably close to a multiple-site atomicity
problem that, at least in principle, can not be solved. The only thing that rescues them is
our observation that the several workers will do their parts eventually, not necessarily
simultaneously. If she had required simultaneous action, Alice would have been in
trouble.

The unsolvable problem is known as the dilemma of the two generals.

Saltzer & Kaashoek Ch. 9, p. 89 June 24, 2009 12:26 am

9–90 CHAPTER 9 Atomicity: All-or-Nothing and Before-or-After

9.6.4 The Dilemma of the Two Generals

An important constraint on possible coordination protocols when communication is
unreliable is captured in a vivid analogy, called the dilemma of the two generals.* Suppose
that two small armies are encamped on two mountains outside a city. The city is well-
enough defended that it can repulse and destroy either one of the two armies. Only if the
two armies attack simultaneously can they take the city. Thus the two generals who com
mand the armies desire to coordinate their attack.

The only method of communication between the two generals is to send runners
from one camp to the other. But the defenders of the city have sentries posted in the val
ley separating the two mountains, so there is a chance that the runner, trying to cross the
valley, will instead fall into enemy hands, and be unable to deliver the message.

Suppose that the first general sends this message:

From:Julius Caesar

To:Titus Labienus

Date:11 January

I propose to cross the Rubicon and attack at dawn tomorrow. OK?

expecting that the second general will respond either with:

From:Titus Labienus

To:Julius Caesar;

Date:11 January

Yes, dawn on the 12th.

or, possibly:

From:Titus Labienus

To:Julius Caesar

Date:11 January

No. I am awaiting reinforcements from Gaul.

Suppose further that the first message does not make it through. In that case, the sec
ond general does not march because no request to do so arrives. In addition, the first
general does not march because no response returns, and all is well (except for the lost
runner).

Now, instead suppose the runner delivers the first message successfully and second
general sends the reply “Yes,” but that the reply is lost. The first general cannot distin
guish this case from the earlier case, so that army will not march. The second general has
agreed to march, but knowing that the first general won’t march unless the “Yes” confir
mation arrives, the second general will not march without being certain that the first

* The origin of this analogy has been lost, but it was apparently first described in print in 1977 by
Jim N. Gray in his “Notes on Database Operating Systems”, reprinted in Operating Systems, Lecture
Notes in Computer Science 60, Springer Verlag, 1978. At about the same time, Danny Cohen
described another analogy he called the dating protocol, which is congruent with the dilemma of
the two generals.

Saltzer & Kaashoek Ch. 9, p. 90 June 24, 2009 12:26 am

9.6 Atomicity across Layers and Multiple Sites 9–91

general received the confirmation. This hesitation on the part of the second general sug
gests that the first general should send back an acknowledgment of receipt of the
confirmation:

From:Julius Caesar

To:Titus Labienus

Date:11 January

The die is cast.

Unfortunately, that doesn’t help, since the runner carrying this acknowledgment may
be lost and the second general, not receiving the acknowledgment, will still not march.
Thus the dilemma.

We can now leap directly to a conclusion: there is no protocol with a bounded num
ber of messages that can convince both generals that it is safe to march. If there were such
a protocol, the last message in any particular run of that protocol must be unnecessary to
safe coordination because it might be lost, undetectably. Since the last message must be
unnecessary, one could delete that message to produce another, shorter sequence of mes
sages that must guarantee safe coordination. We can reapply the same reasoning
repeatedly to the shorter message sequence to produce still shorter ones, and we conclude
that if such a safe protocol exists it either generates message sequences of zero length or
else of unbounded length. A zero-length protocol can’t communicate anything, and an
unbounded protocol is of no use to the generals, who must choose a particular time to
march.

A practical general, presented with this dilemma by a mathematician in the field,
would reassign the mathematician to a new job as a runner, and send a scout to check
out the valley and report the probability that a successful transit can be accomplished
within a specified time. Knowing that probability, the general would then send several
(hopefully independent) runners, each carrying a copy of the message, choosing a num
ber of runners large enough that the probability is negligible that all of them fail to
deliver the message before the appointed time. (The loss of all the runners would be what
Chapter 8[on-line] called an intolerable error.) Similarly, the second general sends many
runners each carrying a copy of either the “Yes” or the “No” acknowledgment. This pro
cedure provides a practical solution of the problem, so the dilemma is of no real
consequence. Nevertheless, it is interesting to discover a problem that cannot, in princi
ple, be solved with complete certainty.

We can state the theoretical conclusion more generally and succinctly: if messages
may be lost, no bounded protocol can guarantee with complete certainty that both gen
erals know that they will both march at the same time. The best that they can do is accept
some non-zero probability of failure equal to the probability of non-delivery of their last
message.

It is interesting to analyze just why we can’t we use a distributed two-phase commit
protocol to resolve the dilemma of the two generals. As suggested at the outset, it has to
do with a subtle difference in when things may, or must, happen. The two generals
require, in order to vanquish the defenses of the city, that they march at the same time.

Saltzer & Kaashoek Ch. 9, p. 91 June 24, 2009 12:26 am

9–92 CHAPTER 9 Atomicity: All-or-Nothing and Before-or-After

The persistent senders of the distributed two-phase commit protocol ensure that if the
coordinator decides to commit, all of the workers will eventually also commit, but there
is no assurance that they will do so at the same time. If one of the communication links
goes down for a day, when it comes back up the worker at the other end of that link will
then receive the notice to commit, but this action may occur a day later than the actions
of its colleagues. Thus the problem solved by distributed two-phase commit is slightly
relaxed when compared with the dilemma of the two generals. That relaxation doesn’t
help the two generals, but the relaxation turns out to be just enough to allow us to devise
a protocol that ensures correctness.

By a similar line of reasoning, there is no way to ensure with complete certainty that
actions will be taken simultaneously at two sites that communicate only via a best-effort
network. Distributed two-phase commit can thus safely open a cash drawer of an ATM
in Tokyo, with confidence that a computer in Munich will eventually update the balance
of that account. But if, for some reason, it is necessary to open two cash drawers at dif
ferent sites at the same time, the only solution is either the probabilistic approach or to
somehow replace the best-effort network with a reliable one. The requirement for reli
able communication is why real estate transactions and weddings (both of which are
examples of two-phase commit protocols) usually occur with all of the parties in one
room.

9.7 A More Complete Model of Disk Failure (Advanced Topic)
Section 9.2 of this chapter developed a failure analysis model for a calendar management
program in which a system crash may corrupt at most one disk sector—the one, if any,
that was being written at the instant of the crash. That section also developed a masking
strategy for that problem, creating all-or-nothing disk storage. To keep that development
simple, the strategy ignored decay events. This section revisits that model, considering
how to also mask decay events. The result will be all-or-nothing durable storage, mean
ing that it is both all-or-nothing in the event of a system crash and durable in the face of
decay events.

9.7.1 Storage that is Both All-or-Nothing and Durable

In Chapter 8[on-line] we learned that to obtain durable storage we should write two
or more replicas of each disk sector. In the current chapter we learned that to recover
from a system crash while writing a disk sector we should never overwrite the previous
version of that sector, we should write a new version in a different place. To obtain stor
age that is both durable and all-or-nothing we combine these two observations: make
more than one replica, and don’t overwrite the previous version. One easy way to do that
would be to simply build the all-or-nothing storage layer of the current chapter on top
of the durable storage layer of Chapter 8[on-line]. That method would certainly work
but it is a bit heavy-handed: with a replication count of just two, it would lead to allo-

Saltzer & Kaashoek Ch. 9, p. 92 June 24, 2009 12:26 am

9.7 A More Complete Model of Disk Failure (Advanced Topic) 9–93

cating six disk sectors for each sector of real data. This is a case in which modularity has
an excessive cost.

Recall that the parameter that Chapter 8[on-line] used to determine frequency of
checking the integrity of disk storage was the expected time to decay, Td. Suppose for the
moment that the durability requirement can be achieved by maintaining only two cop
ies. In that case, Td must be much greater than the time required to write two copies of
a sector on two disks. Put another way, a large Td means that the short-term chance of a
decay event is small enough that the designer may be able to safely neglect it. We can
take advantage of this observation to devise a slightly risky but far more economical
method of implementing storage that is both durable and all-or-nothing with just two
replicas. The basic idea is that if we are confident that we have two good replicas of some
piece of data for durability, it is safe (for all-or-nothing atomicity) to overwrite one of the
two replicas; the second replica can be used as a backup to ensure all-or-nothing atom
icity if the system should happen to crash while writing the first one. Once we are
confident that the first replica has been correctly written with new data, we can safely
overwrite the second one, to regain long-term durability. If the time to complete the two
writes is short compared with Td, the probability that a decay event interferes with this
algorithm will be negligible. Figure 9.38 shows the algorithm and the two replicas of the
data, here named D0 and D1.

An interesting point is that ALL_OR_NOTHING_DURABLE_GET does not bother to check the
status returned upon reading D1—it just passes the status value along to its caller. The
reason is that in the absence of decay CAREFUL_GET has no expected errors when reading
data that CAREFUL_PUT was allowed to finish writing. Thus the returned status would be
BAD only in two cases:

1. CAREFUL_PUT of D1 was interrupted in mid-operation, or

2. D1 was subject to an unexpected decay.

The algorithm guarantees that the first case cannot happen.
ALL_OR_NOTHING_DURABLE_PUT doesn’t begin CAREFUL_PUT on data D1 until after the comple
tion of its CAREFUL_PUT on data D0. At most one of the two copies could be BAD because of
a system crash during CAREFUL_PUT. Thus if the first copy (D0) is BAD, then we expect that
the second one (D1) is OK.

The risk of the second case is real, but we have assumed its probability to be small: it
arises only if there is a random decay of D1 in a time much shorter than Td. In reading
D1 we have an opportunity to detect that error through the status value, but we have no
way to recover when both data copies are damaged, so this detectable error must be clas
sified as untolerated. All we can do is pass a status report along to the application so that
it knows that there was an untolerated error.

There is one currently unnecessary step hidden in the SALVAGE program: if D0 is BAD,
nothing is gained by copying D1 onto D0, since ALL_OR_NOTHING_DURABLE_PUT, which
called SALVAGE, will immediately overwrite D0 with new data. The step is included
because it allows SALVAGE to be used in a refinement of the algorithm.

Saltzer & Kaashoek Ch. 9, p. 93 June 24, 2009 12:26 am

9–94 CHAPTER 9 Atomicity: All-or-Nothing and Before-or-After

In the absence of decay events, this algorithm would be just as good as the all-or-noth
ing procedures of Figures 9.6 and 9.7, and it would perform somewhat better, since it
involves only two copies. Assuming that errors are rare enough that recovery operations
do not dominate performance, the usual cost of ALL_OR_NOTHING_DURABLE_GET is just one
disk read, compared with three in the ALL_OR_NOTHING_GET algorithm. The cost of
ALL_OR_NOTHING_DURABLE_PUT is two disk reads (in SALVAGE) and two disk writes, compared
with three disk reads and three disk writes for the ALL_OR_NOTHING_PUT algorithm.

That analysis is based on a decay-free system. To deal with decay events, thus making
the scheme both all-or-nothing and durable, the designer adopts two ideas from the dis
cussion of durability in Chapter 8[on-line], the second of which eats up some of the
better performance:

1. 	Place the two copies, D0 and D1, in independent decay sets (for example write
them on two different disk drives, preferably from different vendors).

2. 	Have a clerk run the SALVAGE program on every atomic sector at least once every
Td seconds.

1 procedure ALL_OR_NOTHING_DURABLE_GET (reference data, atomic_sector)

2 ds ← CAREFUL_GET (data, atomic_sector.D0)

3 if ds = BAD then

4 ds ← CAREFUL_GET (data, atomic_sector.D1)

5 return ds

6 procedure ALL_OR_NOTHING_DURABLE_PUT (new_data, atomic_sector)

7 SALVAGE(atomic_sector)

8 ds ← CAREFUL_PUT (new_data, atomic_sector.D0)

9 ds ← CAREFUL_PUT (new_data, atomic_sector.D1)

10 return ds

11 procedure SALVAGE(atomic_sector) //Run this program every Td seconds.

12 ds0 ← CAREFUL_GET (data0, atomic_sector.D0)

13 ds1 ← CAREFUL_GET (data1, atomic_sector.D1)

14 if ds0 = BAD then

15 CAREFUL_PUT (data1, atomic_sector.D0)

16 else if ds1 = BAD then

17 CAREFUL_PUT (data0, atomic_sector.D1)

18 if data0 ≠ data1 then

19 CAREFUL_PUT (data0, atomic_sector.D1)

D0:

FIGURE 9.38

data0 D1: data1

Data arrangement and algorithms to implement all-or-nothing durable storage on top of the
careful storage layer of Figure 8.12.

Saltzer & Kaashoek Ch. 9, p. 94	 June 24, 2009 12:26 am

9.8 Case Studies: Machine Language Atomicity 9–95

The clerk running the SALVAGE program performs 2N disk reads every Td seconds to
maintain N durable sectors. This extra expense is the price of durability against disk
decay. The performance cost of the clerk depends on the choice of Td, the value of N,
and the priority of the clerk. Since the expected operational lifetime of a hard disk is usu
ally several years, setting Td to a few weeks should make the chance of untolerated failure
from decay negligible, especially if there is also an operating practice to routinely replace
disks well before they reach their expected operational lifetime. A modern hard disk with
a capacity of one terabyte would have about N = 109 kilobyte-sized sectors. If it takes 10
milliseconds to read a sector, it would take about 2 x 107 seconds, or two days, for a clerk
to read all of the contents of two one-terabyte hard disks. If the work of the clerk is sched
uled to occur at night, or uses a priority system that runs the clerk when the system is
otherwise not being used heavily, that reading can spread out over a few weeks and the
performance impact can be minor.

A few paragraphs back mentioned that there is the potential for a refinement: If we
also run the SALVAGE program on every atomic sector immediately following every system
crash, then it should not be necessary to do it at the beginning of every
ALL_OR_NOTHING_DURABLE_PUT. That variation, which is more economical if crashes are
infrequent and disks are not too large, is due to Butler Lampson and Howard Sturgis
[Suggestions for Further Reading 1.8.7]. It raises one minor concern: it depends on the
rarity of coincidence of two failures: the spontaneous decay of one data replica at about
the same time that CAREFUL_PUT crashes in the middle of rewriting the other replica of that
same sector. If we are convinced that such a coincidence is rare, we can declare it to be
an untolerated error, and we have a self-consistent and more economical algorithm.
With this scheme the cost of ALL_OR_NOTHING_DURABLE_PUT reduces to just two disk writes.

9.8 Case Studies: Machine Language Atomicity

9.8.1 Complex Instruction Sets: The General Electric 600 Line

In the early days of mainframe computers, most manufacturers reveled in providing elab
orate instruction sets, without paying much attention to questions of atomicity. The
General Electric 600 line, which later evolved to be the Honeywell Information System,
Inc., 68 series computer architecture, had a feature called “indirect and tally.” One could
specify this feature by setting to ON a one-bit flag (the “tally” flag) stored in an unused
high-order bit of any indirect address. The instruction

Load register A from Y indirect.

was interpreted to mean that the low-order bits of the cell with address Y contain another
address, called an indirect address, and that indirect address should be used to retrieve
the operand to be loaded into register A. In addition, if the tally flag in cell Y is ON, the
processor is to increment the indirect address in Y by one and store the result back in Y.
The idea is that the next time Y is used as an indirect address it will point to a different

Saltzer & Kaashoek Ch. 9, p. 95 June 24, 2009 12:26 am

9–96 CHAPTER 9 Atomicity: All-or-Nothing and Before-or-After

operand—the one in the next sequential address in memory. Thus the indirect and tally
feature could be used to sweep through a table. The feature seemed useful to the design
ers, but it was actually only occasionally, because most applications were written in
higher-level languages and compiler writers found it hard to exploit. On the other hand
the feature gave no end of trouble when virtual memory was retrofitted to the product
line.

Suppose that virtual memory is in use, and that the indirect word is located in a page
that is in primary memory, but the actual operand is in another page that has been
removed to secondary memory. When the above instruction is executed, the processor
will retrieve the indirect address in Y, increment it, and store the new value back in Y.
Then it will attempt to retrieve the actual operand, at which time it discovers that it is
not in primary memory, so it signals a missing-page exception. Since it has already mod
ified the contents of Y (and by now Y may have been read by another processor or even
removed from memory by the missing-page exception handler running on another pro
cessor), it is not feasible to back out and act as if this instruction had never executed. The
designer of the exception handler would like to be able to give the processor to another
thread by calling a function such as AWAIT while waiting for the missing page to arrive.
Indeed, processor reassignment may be the only way to assign a processor to retrieve the
missing page. However, to reassign the processor it is necessary to save its current execu
tion state. Unfortunately, its execution state is “half-way through the instruction last
addressed by the program counter.” Saving this state and later restarting the processor in
this state is challenging. The indirect and tally feature was just one of several sources of
atomicity problems that cropped up when virtual memory was added to this processor.

The virtual memory designers desperately wanted to be able to run other threads on
the interrupted processor. To solve this problem, they extended the definition of the cur
rent program state to contain not just the next-instruction counter and the program-
visible registers, but also the complete internal state description of the processor—a 216
bit snapshot in the middle of the instruction. By later restoring the processor state to con
tain the previously saved values of the next-instruction counter, the program-visible
registers, and the 216-bit internal state snapshot, the processor could exactly continue
from the point at which the missing-page alert occurred. This technique worked but it
had two awkward side effects: 1) when a program (or programmer) inquires about the
current state of an interrupted processor, the state description includes things not in the
programmer’s interface; and 2) the system must be careful when restarting an interrupted
program to make certain that the stored micro-state description is a valid one. If someone
has altered the state description the processor could try to continue from a state it could
never have gotten into by itself, which could lead to unplanned behavior, including fail
ures of its memory protection features.

9.8.2 More Elaborate Instruction Sets: The IBM System/370

When IBM developed the System/370 by adding virtual memory to its System/360
architecture, certain System/360 multi-operand character-editing instructions caused

Saltzer & Kaashoek Ch. 9, p. 96 June 24, 2009 12:26 am

9.8 Case Studies: Machine Language Atomicity 9–97

atomicity problems. For example, the TRANSLATE instruction contains three arguments,
two of which are addresses in memory (call them string and table) and the third of which,
length, is an 8-bit count that the instruction interprets as the length of string. TRANSLATE

takes one byte at a time from string, uses that byte as an offset in table, retrieves the byte
at the offset, and replaces the byte in string with the byte it found in table. The designers
had in mind that TRANSLATE could be used to convert a character string from one character
set to another.

The problem with adding virtual memory is that both string and table may be as long
as 65,536 bytes, so either or both of those operands may cross not just one, but several
page boundaries. Suppose just the first page of string is in physical memory. The TRANS

LATE instruction works its way through the bytes at the beginning of string. When it
comes to the end of that first page, it encounters a missing-page exception. At this point,
the instruction cannot run to completion because data it requires is missing. It also can
not back out and act as if it never started because it has modified data in memory by
overwriting it. After the virtual memory manager retrieves the missing page, the problem
is how to restart the half-completed instruction. If it restarts from the beginning, it will
try to convert the already-converted characters, which would be a mistake. For correct
operation, the instruction needs to continue from where it left off.

Rather than tampering with the program state definition, the IBM processor design
ers chose a dry run strategy in which the TRANSLATE instruction is executed using a hidden
copy of the program-visible registers and making no changes in memory. If one of the
operands causes a missing-page exception, the processor can act as if it never tried the
instruction, since there is no program-visible evidence that it did. The stored program
state shows only that the TRANSLATE instruction is about to be executed. After the proces
sor retrieves the missing page, it restarts the interrupted thread by trying the TRANSLATE

instruction from the beginning again, another dry run. If there are several missing pages,
several dry runs may occur, each getting one more page into primary memory. When a
dry run finally succeeds in completing, the processor runs the instruction once more, this
time for real, using the program-visible registers and allowing memory to be updated.
Since the System/370 (at the time this modification was made) was a single-processor
architecture, there was no possibility that another processor might snatch a page away
after the dry run but before the real execution of the instruction. This solution had the
side effect of making life more difficult for a later designer with the task of adding mul
tiple processors.

9.8.3 The Apollo Desktop Computer and the Motorola M68000 Microprocessor

When Apollo Computer designed a desktop computer using the Motorola 68000 micro
processor, the designers, who wanted to add a virtual memory feature, discovered that
the microprocessor instruction set interface was not atomic. Worse, because it was con
structed entirely on a single chip it could not be modified to do a dry run (as in the IBM
370) or to make it store the internal microprogram state (as in the General Electric 600
line). So the Apollo designers used a different strategy: they installed not one, but two

Saltzer & Kaashoek Ch. 9, p. 97 June 24, 2009 12:26 am

9–98 CHAPTER 9 Atomicity: All-or-Nothing and Before-or-After

Motorola 68000 processors. When the first one encounters a missing-page exception, it
simply stops in its tracks, and waits for the operand to appear. The second Motorola
68000 (whose program is carefully planned to reside entirely in primary memory) fetches
the missing page and then restarts the first processor.

Other designers working with the Motorola 68000 used a different, somewhat risky
trick: modify all compilers and assemblers to generate only instructions that happen to
be atomic. Motorola later produced a version of the 68000 in which all internal state reg
isters of the microprocessor could be saved, the same method used in adding virtual
memory to the General Electric 600 line.

Exercises

9.1 	 Locking up humanities: The registrar’s office is upgrading its scheduling program for
limited-enrollment humanities subjects. The plan is to make it multithreaded, but
there is concern that having multiple threads trying to update the database at the
same time could cause trouble. The program originally had just two operations:

status ← REGISTER (subject_name)

DROP (subject_name)

where subject_name was a string such as “21W471”. The REGISTER procedure
checked to see if there is any space left in the subject, and if there was, it
incremented the class size by one and returned the status value ZERO. If there was no
space, it did not change the class size; instead it returned the status value –1. (This
is a primitive registration system—it just keeps counts!)

As part of the upgrade, subject_name has been changed to a two-component
structure:

structure subject

string subject_name

lock slock

and the registrar is now wondering where to apply the locking primitives,

ACQUIRE (subject.slock)

RELEASE (subject.slock)

Here is a typical application program, which registers the caller for two humanities

Saltzer & Kaashoek Ch. 9, p. 98	 June 24, 2009 12:26 am

 Exercises 9–99

subjects, hx and hy:

procedure REGISTER_TWO (hx, hy)

status ← REGISTER (hx)

if status = 0 then

status ← REGISTER (hy)

if status = –1 then

DROP (hx)

return status;

 9.1a. 	The goal is that the entire procedure REGISTER_TWO should have the before-or-after
property. Add calls for ACQUIRE and RELEASE to the REGISTER_TWO procedure that
obey the simple locking protocol.

 9.1b. 	Add calls to ACQUIRE and RELEASE that obey the two-phase locking protocol, and in
addition postpone all ACQUIREs as late as possible and do all RELEASEs as early as
possible.

Louis Reasoner has come up with a suggestion that he thinks could simplify the job
of programmers creating application programs such as REGISTER_TWO. His idea is to
revise the two programs REGISTER and DROP by having them do the ACQUIRE and
RELEASE internally. That is, the procedure:

procedure REGISTER (subject)

{ current code }

return status

would become instead:

procedure REGISTER (subject)

ACQUIRE (subject.slock)

{ current code }

RELEASE (subject.slock)

return status

9.1c. As usual, Louis has misunderstood some aspect of the problem. Give a brief
explanation of what is wrong with this idea.

1995–3–2a…c

9.2 Ben and Alyssa are debating a fine point regarding version history transaction
disciplines and would appreciate your help. Ben says that under the mark point
transaction discipline, every transaction should call MARK_POINT_ANNOUNCE as soon as
possible, or else the discipline won't work. Alyssa claims that everything will come
out correct even if no transaction calls MARK_POINT_ANNOUNCE. Who is right?

2006-0-1

9.3 	 Ben and Alyssa are debating another fine point about the way that the version
history transaction discipline bootstraps. The version of NEW_OUTCOME_RECORD given
in the text uses TICKET as well as ACQUIRE and RELEASE. Alyssa says this is overkill—it

Saltzer & Kaashoek Ch. 9, p. 99	 June 24, 2009 12:26 am

9–100 CHAPTER 9 Atomicity: All-or-Nothing and Before-or-After

should be possible to correctly coordinate NEW_OUTCOME_RECORD using just ACQUIRE

and RELEASE. Modify the pseudocode of Figure 9.30 to create a version of
NEW_OUTCOME_RECORD that doesn't need the ticket primitive.

9.4 	 You have been hired by Many-MIPS corporation to help design a new 32-register
RISC processor that is to have six-way multiple instruction issue. Your job is to
coordinate the interaction among the six arithmetic-logic units (ALUs) that will be
running concurrently. Recalling the discussion of coordination, you realize that the
first thing you must do is decide what constitutes “correct” coordination for a
multiple-instruction-issue system. Correct coordination for concurrent operations
on a database was said to be:
No matter in what order things are actually calculated, the final result is always
guaranteed to be one that could have been obtained by some sequential ordering of
the concurrent operations.
You have two goals: (1) maximum performance, and (2) not surprising a
programmer who wrote a program expecting it to be executed on a single-
instruction-issue machine.
Identify the best coordination correctness criterion for your problem.

A. 	 Multiple instruction issue must be restricted to sequences of instructions that have
non-overlapping register sets.

B. 	 No matter in what order things are actually calculated, the final result is always
guaranteed to be one that could have been obtained by some sequential ordering of
the instructions that were issued in parallel.

C. 	 No matter in what order things are actually calculated, the final result is always
guaranteed to be the one that would have been obtained by the original ordering of
the instructions that were issued in parallel.

D. 	 The final result must be obtained by carrying out the operations in the order
specified by the original program.

E. 	 No matter in what order things are actually calculated, the final result is always
guaranteed to be one that could have been obtained by some set of instructions
carried out sequentially.

F.	 The six ALUs do not require any coordination.
1997–0–02

9.5 	 In 1968, IBM introduced the Information Management System (IMS) and it soon
became one of the most widely used database management systems in the world. In
fact, IMS is still in use today. At the time of introduction IMS used a before-or-after
atomicity protocol consisting of the following two rules:

• 	 A transaction may read only data that has been written by previously committed
transactions.

• 	 A transaction must acquire a lock for every data item that it will write.

Saltzer & Kaashoek Ch. 9, p. 100	 June 24, 2009 12:26 am

 Exercises 9–101

Consider the following two transactions, which, for the interleaving shown, both
adhere to the protocol:

1 BEGIN (t1); BEGIN (t2)
2 ACQUIRE (y.lock)
3 temp1 ← x
4 ACQUIRE (x.lock)
5 temp2 ← y
6 x ← temp2
7 y ← temp1
8 COMMIT (t1)
9 COMMIT (t2)

Previously committed transactions had set x ← 3 and y ← 4.

9.5a. After both transactions complete, what are the values of x and y? In what sense is
this answer wrong?

1982–3–3a

9.5b. 	In the mid-1970’s, this flaw was noticed, and the before-or-after atomicity protocol
was replaced with a better one, despite a lack of complaints from customers. Explain
why customers may not have complained about the flaw.

1982–3–3b

9.6 	 A system that attempts to make actions all-or-nothing writes the following type of
records to a log maintained on non-volatile storage:

• <STARTED i>	 action i starts.
•	 <i, x, old, new> action i writes the value new over the value old

for the variable x.
• <COMMITTED i> action i commits.
• <ABORTED i> 	action	 i aborts.
• <CHECKPOINT i, j,…> At this checkpoint, actions i, j,… are pending.

Actions start in numerical order. A crash occurs, and the recovery procedure finds

Saltzer & Kaashoek Ch. 9, p. 101	 June 24, 2009 12:26 am

9–102 CHAPTER 9 Atomicity: All-or-Nothing and Before-or-After

the following log records starting with the last checkpoint:

<CHECKPOINT 17, 51, 52>

<STARTED 53>

<STARTED 54>

<53, y, 5, 6>

<53, x, 5, 9>

<COMMITTED 53>

<54, y, 6, 4>

<STARTED 55>

<55, z, 3, 4>

<ABORTED 17>

<51, q, 1, 9>

<STARTED 56>

<55, y, 4, 3>

<COMMITTED 54>

<55, y, 3, 7>

<COMMITTED 51>

<STARTED 57>

<56, x, 9, 2>

<56, w, 0, 1>

<COMMITTED 56>

<57, u, 2, 1>

****************** crash happened here **************

9.6a. Assume that the system is using a rollback recovery procedure. How much farther
back in the log should the recovery procedure scan?

9.6b. 	Assume that the system is using a roll-forward recovery procedure. How much
farther back in the log should the recovery procedure scan?

9.6c. Which operations mentioned in this part of the log are winners and which are
losers?

 9.6d. 	What are the values of x and y immediately after the recovery procedure finishes?
Why?

1994–3–3

9.7 	 The log of exercise 9.6 contains (perhaps ambiguous) evidence that someone didn’t
follow coordination rules. What is that evidence?

1994–3–4

9.8 	 Roll-forward recovery requires writing the commit (or abort) record to the log
before doing any installs to cell storage. Identify the best reason for this requirement.

A. So that the recovery manager will know what to undo.
B. So that the recovery manager will know what to redo.
C. 	 Because the log is less likely to fail than the cell storage.
D. 	 To minimize the number of disk seeks required.

1994–3–5

Saltzer & Kaashoek Ch. 9, p. 102	 June 24, 2009 12:26 am

 Exercises 9–103

9.9 	 Two-phase locking within transactions ensures that

A. No deadlocks will occur.
B. Results will correspond to some serial execution of the transactions.
C. 	 Resources will be locked for the minimum possible interval.
D. 	 Neither gas nor liquid will escape.
E. Transactions will succeed even if one lock attempt fails.

1997–3–03

9.10 	 Pat, Diane, and Quincy are having trouble using e-mail to schedule meetings. Pat
suggests that they take inspiration from the 2-phase commit protocol.

9.10a. Which of the following protocols most closely resembles 2-phase commit?

I. a. Pat requests everyone’s schedule openings.
b. Everyone replies with a list but does not guarantee to hold all the times available.
c. Pat inspects the lists and looks for an open time.

If there is a time,

Pat chooses a meeting time and sends it to everyone.

Otherwise

Pat sends a message canceling the meeting.

II. a–c, as in protocol I.
d. Everyone, if they received the second message,

acknowledge receipt.

Otherwise

send a message to Pat asking what happened.

III a–c, as in protocol I.
d. Everyone, if their calendar is still open at the chosen time

Send Pat an acknowledgment.

Otherwise

Send Pat apologies.

e. Pat collects the acknowledgments. If all are positive

Send a message to everyone saying the meeting is ON.

Otherwise

Send a message to everyone saying the meeting is OFF.

f. Everyone, if they received the ON/OFF message,

acknowledge receipt.

Otherwise

send a message to Pat asking what happened.

IV. a–f, as in protocol III.
g. Pat sends a message telling everyone that everyone has confirmed.
h. Everyone acknowledges the confirmation.

 9.10b. For the protocol you selected, which step commits the meeting time?
1994–3–7

Saltzer & Kaashoek Ch. 9, p. 103	 June 24, 2009 12:26 am

9–104 CHAPTER 9 Atomicity: All-or-Nothing and Before-or-After

9.11 	 Alyssa P. Hacker needs a transaction processing system for updating information
about her collection of 97 cockroaches.*

9.11a. In her first design, Alyssa stores the database on disk. When a transaction commits,
it simply goes to the disk and writes its changes in place over the old data. What are
the major problems with Alyssa’s system?

 9.11b. In Alyssa’s second design, the only structure she keeps on disk is a log, with a
reference copy of all data in volatile RAM. The log records every change made to
the database, along with the transaction which the change was a part of. Commit
records, also stored in the log, indicate when a transaction commits. When the
system crashes and recovers, it replays the log, redoing each committed transaction,
to reconstruct the reference copy in RAM. What are the disadvantages of Alyssa’s
second design?

To speed things up, Alyssa makes an occasional checkpoint of her database. To
checkpoint, Alyssa just writes the entire state of the database into the log. When the
system crashes, she starts from the last checkpointed state, and then redoes or
undoes some transactions to restore her database. Now consider the five
transactions in the illustration:

T1

T2

T3

T4

T5

begin

commit

timecr
as

h

ch
ec

kp
oi

nt

Transactions T2, T3, and T5 committed before the crash, but T1 and T4 were still
pending.

9.11c. When the system recovers, after the checkpointed state is loaded, some
transactions will need to be undone or redone using the log. For each transaction,

* Credit for developing exercise 9.11 goes to Eddie Kohler.

Saltzer & Kaashoek Ch. 9, p. 104	 June 24, 2009 12:26 am

 Exercises 9–105

mark off in the table whether that transaction needs to be undone, redone, or
neither.

Undone Redone Neither

T1

T2

T3

T4

T5

9.11d. Now, assume that transactions T2 and T3 were actually nested transactions: T2 was
nested in T1, and T3 was nested in T2. Again, fill in the table

Undone Redone Neither

T1

T2

T3

T4

T5

1996–3–3

9.12 Alice is acting as the coordinator for Bob and Charles in a two-phase commit
protocol. Here is a log of the messages that pass among them:

1 Alice ⇒ Bob: please do X
2 Alice ⇒ Charles: please do Y
3 Bob ⇒ Alice: done with X
4 Charles ⇒ Alice: done with Y
5 Alice ⇒ Bob: PREPARE to commit or abort
6 Alice ⇒ Charles: PREPARE to commit or abort
7 Bob ⇒ Alice: PREPARED

8 Charles ⇒ Alice: PREPARED

9 Alice ⇒ Bob: COMMIT

10 Alice ⇒ Charles: COMMIT

At which points in this sequence is it OK for Bob to abort his part of the

Saltzer & Kaashoek Ch. 9, p. 105 June 24, 2009 12:26 am

9–106 CHAPTER 9 Atomicity: All-or-Nothing and Before-or-After

transaction?

A. After Bob receives message 1 but before he sends message 3.
B. After Bob sends message 3 but before he receives message 5.
C. After Bob receives message 5 but before he sends message 7.
D. After Bob sends message 7 but before he receives message 9.
E. After Bob receives message 9.

2008–3–11

Additional exercises relating to Chapter 9 can be found in problem sets 29
through 40.

Saltzer & Kaashoek Ch. 9, p. 106 June 24, 2009 12:26 am

CHAPTERGlossary for Chapter 9

abort—Upon deciding that an all-or-nothing action cannot or should not commit, to
undo all of the changes previously made by that all-or-nothing action. After aborting,
the state of the system, as viewed by anyone above the layer that implements the all-or
nothing action, is as if the all-or-nothing action never existed. Compare with commit.
[Ch. 9]

all-or-nothing atomicity—A property of a multistep action that if an anticipated failure
occurs during the steps of the action, the effect of the action from the point of view of
its invoker is either never to have started or else to have been accomplished completely.
Compare with before-or-after atomicity and atomic. [Ch. 9]

archive—A record, usually kept in the form of a log, of old data values, for auditing,
recovery from application mistakes, or historical interest. [Ch. 9]

atomic (adj.); atomicity (n.)—A property of a multistep action that there be no evidence
that it is composite above the layer that implements it. An atomic action can be before-
or-after, which means that its effect is as if it occurred either completely before or
completely after any other before-or-after action. An atomic action can also be all-or
nothing, which means that if an anticipated failure occurs during the action, the effect
of the action as seen by higher layers is either never to have started or else to have
completed successfully. An atomic action that is both all-or-nothing and before-or-after
is known as a transaction. [Ch. 9]

atomic storage—Cell storage for which a multicell PUT can have only two possible
outcomes: (1) it stores all data successfully, or (2) it does not change the previous data at
all. In consequence, either a concurrent thread or (following a failure) a later thread
doing a GET will always read either all old data or all new data. Computer architectures
in which multicell PUTs are not atomic are said to be subject to write tearing. [Ch. 9]

before-or-after atomicity—A property of concurrent actions: Concurrent actions are
before-or-after actions if their effect from the point of view of their invokers is the same
as if the actions occurred either completely before or completely after one another. One
consequence is that concurrent before-or-after software actions cannot discover the
composite nature of one another (that is, one action cannot tell that another has multiple
steps). A consequence in the case of hardware is that concurrent before-or-after WRITEs to
the same memory cell will be performed in some order, so there is no danger that the cell
will end up containing, for example, the OR of several WRITE values. The database
literature uses the words “isolation” and “serializable”, the operating system literature
uses the words “mutual exclusion” and “critical section”, and the computer architecture
literature uses the unqualified word “atomicity” for this concept. Compare with all-or
nothing atomicity and atomic. [Ch. 9]

blind write—An update to a data value X by a transaction that did not previously read X.
[Ch. 9] 9–107

Saltzer & Kaashoek Ch. 9, p. 107 June 24, 2009 12:26 am

9–108 Glossary for Chapter 9

cell storage—Storage in which a WRITE or PUT operates by overwriting, thus destroying
previously stored information. Many physical storage devices, including magnetic disk
and CMOS random access memory, implement cell storage. Compare with journal
storage. [Ch. 9]

checkpoint—1. (n.) Information written to non-volatile storage that is intended to speed
up recovery from a crash. 2 (v.) To write a checkpoint. [Ch. 9]

close-to-open consistency—A consistency model for file operations. When a thread opens
a file and performs several write operations, all of the modifications weill be visible to
concurrent threads only after the first thread closes the file. [Ch. 4]

coheerence—See read/write coherence or cache coherence.

commit—To renounce the ability to abandon an all-or-nothing action unilaterally. One
usually commits an all-or-nothing action before making its results available to
concurrent or later all-or-nothing actions. Before committing, the all-or-nothing action
can be abandoned and one can pretend that it had never been undertaken. After
committing, the all-or-nothing action must be able to complete. A committed all-or
nothing action cannot be abandoned; if it can be determined precisely how far its results
have propagated, it may be possible to reverse some or all of its effects by compensation.
Commitment also usually includes an expectation that the results preserve any
appropriate invariants and will be durable to the extent that the application requires
those properties. Compare with compensate and abort. [Ch. 9]

compensate (adj.); compensation (n.)—To perform an action that reverses the effect of
some previously committed action. Compensation is intrinsically application
dependent; it is easier to reverse an incorrect accounting entry than it is to undrill an
unwanted hole. [Ch. 9]

do action—(n.) Term used in some systems for a redo action. [Ch. 9]

exponential random backoff—A form of exponential backoff in which an action that
repeatedly encounters interference repeatedly doubles (or, more generally, multiplies by
a constant greater than one) the size of an interval from which it randomly chooses its
next delay before retrying. The intent is that by randomly changing the timing relative
to other, interfering actions, the interference will not recur. [Ch. 9]

force—(v.) When output may be buffered, to ensure that a previous output value has
actually been written to durable storage or sent as a message. Caches that are not write-
through usually have a feature that allows the invoker to force some or all of their
contents to the secondary storage medium. [Ch. 9]

install—In a system that uses logs to achieve all-or-nothing atomicity, to write data to cell
storage. [Ch. 9]

journal storage—Storage in which a WRITE or PUT appends a new value, rather than
overwriting a previously stored value. Compare with cell storage. [Ch. 9]

lock point—In a system that provides before-or-after atomicity by locking, the first instant
in a before-or-after action when every lock that will ever be in its lock set has been

Saltzer & Kaashoek Ch. 9, p. 108 June 24, 2009 12:26 am

Glossary for Chapter 9 9–109

acquired. [Ch. 9]

lock set—The collection of all locks acquired during the execution of a before-or-after
action. [Ch. 9]

log—1. (n.) A specialized use of journal storage to maintain an append-only record of some
application activity. Logs are used to implement all-or-nothing actions, for performance
enhancement, for archiving, and for reconciliation. 2. (v.) To append a record to a log.
[Ch. 9]

logical locking—Locking of higher-layer data objects such as records or fields of a database.
Compare with physical locking. [Ch. 9]

mark point—1. (adj.) An atomicity-assuring discipline in which each newly created action
n must wait to begin reading shared data objects until action (n – 1) has marked all of
the variables it intends to modify. 2. (n.) The instant at which an action has marked all
of the variables it intends to modify. [Ch. 9]

optimistic concurrency control—A concurrency control scheme that allows concurrent
threads to proceed even though a risk exists that they will interfere with each other, with
the plan of detecting whether there actually is interference and, if necessary, forcing one
of the threads to abort and retry. Optimistic concurrency control is an effective
technique in situations where interference is possible but not likely. Compare with
pessimistic concurrency control. [Ch. 9]

page fault—See missing-page exception.

pair-and-spare—See pair-and-compare.

pending—A state of an all-or-nothing action, when that action has not yet either
committed or aborted. Also used to describe the value of a variable that was set or
changed by a still-pending all-or-nothing action. [Ch. 9]

pessimistic concurrency control—A concurrency control scheme that forces a thread to
wait if there is any chance that by proceeding it may interfere with another, concurrent,
thread. Pessimistic concurrency control is an effective technique in situations where
interference between concurrent threads has a high probability. Compare with optimistic
concurrency control. [Ch. 9]

physical locking—Locking of lower-layer data objects, typically chunks of data whose
extent is determined by the physical layout of a storage medium. Examples of such
chunks are disk sectors or even an entire disk. Compare with logical locking. [Ch. 9]

prepaging—An optimization for a multilevel memory manager in which the manager
predicts which pages might be needed and brings them into the primary memory before
the application demands them. Compare with demand algorithm.

prepared—In a layered or multiple-site all-or-nothing action, a state of a component action
that has announced that it can, on command, either commit or abort. Having reached
this state, it awaits a decision from the higher-layer coordinator of the action. [Ch. 9]

presented load—See offered load.

Saltzer & Kaashoek Ch. 9, p. 109 June 24, 2009 12:26 am

9–110 Glossary for Chapter 9

progress—A desirable guarantee provided by an atomicity-assuring mechanism: that
despite potential interference from concurrency some useful work will be done. An
example of such a guarantee is that the atomicity-assuring mechanism will not abort at
least one member of the set of concurrent actions. In practice, lack of a progress
guarantee can sometimes be repaired by using exponential random backoff. In formal
analysis of systems, progress is one component of a property known as “liveness”.
Progress is an assurance that the system will move toward some specified goal, whereas
liveness is an assurance that the system will eventually reach that goal. [Ch. 9]

redo action—An application-specified action that, when executed during failure recovery,
produces the effect of some committed component action whose effect may have been
lost in the failure. (Some systems call this a “do action”. Compare with undo action.) [Ch.
 9]

roll-forward recovery—A write-ahead log protocol with the additional requirement that
the application log its outcome record before it performs any install actions. If there is a
failure before the all-or-nothing action passes its commit point, the recovery procedure
does not need to undo anything; if there is a failure after commit, the recovery procedure
can use the log record to ensure that cell storage installs are not lost. Also known as redo
logging. Compare with rollback recovery. [Ch. 9]

rollback recovery—A write-ahead log protocol with the additional requirement that the
application perform all install actions before logging an outcome record. If there is a
failure before the all-or-nothing action commits, a recovery procedure can use the log
record to undo the partially completed all-or-nothing action. Also known as undo
logging. Compare with roll-forward recovery. [Ch. 9]

serializable—A property of before-or-after actions, that even if several operate
concurrently, the result is the same as if they had acted one at a time, in some sequential
(in other words, serial) order. [Ch. 9]

shadow copy—A working copy of an object that an all-or-nothing action creates so that it
can make several changes to the object while the original remains unmodified. When the
all-or-nothing action has made all of the changes, it then carefully exchanges the working
copy with the original, thus preserving the appearance that all of the changes occurred
atomically. Depending on the implementation, either the original or the working copy
may be identified as the “shadow” copy, but the technique is the same in either case. [Ch.
 9]

simple locking—A locking protocol for creating before-or-after actions requiring that no
data be read or written before reaching the lock point. For the atomic action to also be
all-or-nothing, a further requirement is that no locks be released before commit (or
abort). Compare with two-phase locking. [Ch. 9]

simple serialization—An atomicity protocol requiring that each newly created atomic
action must wait to begin execution until all previously started atomic actions are no
longer pending. [Ch. 9]

transaction—A multistep action that is both atomic in the face of failure and atomic in the

Saltzer & Kaashoek Ch. 9, p. 110 June 24, 2009 12:26 am

Glossary for Chapter 9 9–111

face of concurrency. That is, it is both all-or-nothing and before-or-after. [Ch. 9]

transactional memory—A memory model in which multiple references to primary
memory are both all-or-nothing and before-or-after. [Ch. 9]

two generals dilemma—An intrinsic problem that no finite protocol can guarantee to
simultaneously coordinate state values at two places that are linked by an unreliable
communication network. [Ch. 9]

two-phase commit—A protocol that creates a higher-layer transaction out of separate,
lower-layer transactions. The protocol first goes through a preparation (sometimes called
voting) phase, at the end of which each lower-layer transaction reports either that it
cannot perform its part or that it is prepared to either commit or abort. It then enters a
commitment phase in which the higher-layer transaction, acting as a coordinator, makes
a final decision—thus the name two-phase. Two-phase commit has no connection with
the similar-sounding term two-phase locking. [Ch. 9]

two-phase locking—A locking protocol for before-or-after atomicity that requires that no
locks be released until all locks have been acquired (that is, there must be a lock point).
For the atomic action to also be all-or-nothing, a further requirement is that no locks for
objects to be written be released until the action commits. Compare with simple locking.
Two-phase locking has no connection with the similar-sounding term two-phase commit.
[Ch. 9]

undo action—An application-specified action that, when executed during failure recovery
or an abort procedure, reverses the effect of some previously performed, but not yet
committed, component action. The goal is that neither the original action nor its reversal
be visible above the layer that implements the action. Compare with redo and compensate.
[Ch. 9]

version history—The set of all values for an object or variable that have ever existed, stored
in journal storage. [Ch. 9]

write-ahead-log (WAL) protocol—A recovery protocol that requires appending a log
record in journal storage before installing the corresponding data in cell storage. [Ch. 9]

write tearing—See atomic storage.

Saltzer & Kaashoek Ch. 9, p. 111 June 24, 2009 12:26 am

9–112 Glossary for Chapter 9

Saltzer & Kaashoek Ch. 9, p. 112 June 24, 2009 12:26 am

CHAPTERIndex of Chapter 9

Design principles and hints appear in underlined italics. Procedure names appear in SMALL

CAPS. Page numbers in bold face are in the chapter Glossary.

A
abort 9–27, 9–107
ACQUIRE 9–70
action 9–3
adopt sweeping simplifications 9–3, 9–29,

9–30, 9–47
all-or-nothing atomicity 9–21, 9–107
archive 9–37, 9–107

log 9–40
atomic 9–107

action 9–3, 9–107
storage 9–107

atomicity 9–3, 9–19, 9–107
all-or-nothing 9–21, 9–107
before-or-after 9–54, 9–107
log 9–40

B
backoff

exponential random 9–78, 9–107,
9–108

before-or-after atomicity 9–54, 9–107
blind write 9–49, 9–66, 9–107
blocking read 9–11
bootstrapping 9–21, 9–43, 9–61, 9–80

C
cell

storage 9–31, 9–107, 9–108
checkpoint 9–51, 9–107, 9–108
close-to-open consistency 9–107, 9–108
commit 9–27, 9–107, 9–108

two-phase 9–84, 9–107, 9–111
compensation 9–107, 9–108
consistency

close-to-open 9–107, 9–108

external time 9–18

sequential 9–18

D
deadlock 9–76
dependent outcome record 9–81
design principles

adopt sweeping simplifications 9–3, 9–29,
9–30, 9–47

end-to-end argument 9–79

golden rule of atomicity 9–26, 9–42

law of diminishing returns 9–53

dilemma of the two generals 9–90, 9–107,
9–111

diminishing returns, law of 9–53
discipline

simple locking 9–72, 9–107, 9–110
systemwide locking 9–70
two-phase locking 9–73, 9–107, 9–111

do action (see redo action)
dry run 9–97
durability

log 9–40

E
end-to-end argument 9–79
exponential

random backoff 9–78, 9–107, 9–108
external time consistency 9–18

F
force 9–53, 9–107, 9–108

G
golden rule of atomicity 9–26, 9–42
granularity 9–71

9–113

Saltzer & Kaashoek Ch. 9, p. 113 June 24, 2009 12:26 am

Index of Chapter

9–114

H
high-water mark 9–65
hints

optimize for the common case 9–39

I
idempotent 9–47
IMS (see Information Management System)
in-memory database 9–39
Information Management System 9–100
install 9–39, 9–107, 9–108

J
journal storage 9–31, 9–107, 9–108

L
law of diminishing returns 9–53
livelock 9–78
lock 9–69

compatibility mode 9–76

manager 9–70

point 9–72, 9–107, 9–108

set 9–72, 9–107, 9–109

locking discipline
simple 9–72, 9–107, 9–110
systemwide 9–70
two-phase 9–73, 9–107, 9–111

log 9–39, 9–107, 9–109
archive 9–40
atomicity 9–40
durability 9–40
performance 9–40
record 9–42
redo 9–50, 9–107, 9–110
sequence number 9–53
undo 9–50, 9–107, 9–110
write-ahead 9–42, 9–107, 9–111

logical
locking 9–75, 9–107, 9–109

M
mark point 9–58, 9–107, 9–109
memory

transactional 9–69, 9–107, 9–111

multiple
-reader, single-writer protocol 9–76

N
nested outcome record 9–86
non-blocking read 9–12

O
optimistic concurrency control 9–63,

9–107, 9–109
optimize for the common case 9–45
optimize for the common case 9–39
outcome record 9–32

P
pending 9–32, 9–107, 9–109
performance log 9–40
pessimistic concurrency control 9–63,

9–107, 9–109
physical

locking 9–75, 9–107, 9–109
prepaging 9–107, 9–109
PREPARED

message 9–87
state 9–107, 9–109

presumed commit 9–88
progress 9–77, 9–107, 9–110
protocol

two-phase commit 9–84, 9–107, 9–111

R
random

backoff, exponential 9–78, 9–107,
9–108

read-capture 9–63
redo

action 9–43, 9–107, 9–110
log 9–50, 9–107, 9–110

register renaming 9–67
RELEASE 9–70
reorder buffer 9–67
representations

version history 9–55
roll-forward recovery 9–50, 9–107, 9–110

Saltzer & Kaashoek Ch. 9, p. 114 June 24, 2009 12:26 am

Index of Chapter

9–115

rollback recovery 9–50, 9–107, 9–110

S
sequence coordination 9–13
sequential consistency 9–18
serializable 9–18, 9–107, 9–110
shadow copy 9–29, 9–107, 9–110
simple

locking discipline 9–72, 9–107, 9–110
serialization 9–54, 9–107, 9–110

single-writer, multiple-reader protocol 9–76
snapshot isolation 9–68
storage

atomic 9–107
cell 9–31, 9–107, 9–108
journal 9–31, 9–107, 9–108

sweeping simplifications
(see adopt sweeping simplifications)

systemwide lock 9–70

T
tentatively committed 9–82

transaction 9–3, 9–4, 9–107, 9–110
transactional memory 9–69, 9–107, 9–111
TRANSFER operation 9–5
two generals dilemma 9–90, 9–107, 9–111
two-phase

commit 9–84, 9–107, 9–111
locking discipline 9–73, 9–107, 9–111

U
undo

action 9–43, 9–107, 9–111
log 9–50, 9–107, 9–110

V
version history 9–30, 9–107, 9–111

W
WAL (see write-ahead log)
write-ahead log 9–42, 9–107, 9–111
write tearing 9–107

Saltzer & Kaashoek Ch. 9, p. 115 June 24, 2009 12:26 am

Index of Chapter

9–116

Saltzer & Kaashoek Ch. 9, p. 116 June 24, 2009 12:26 am

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

