LECTURE 22: The Poisson process

Definition of the Poisson process

applications
Distribution of number of arrivals
The time of the kth arrival
Memorylessness

Distribution of interarrival times



Definition of the Poisson process
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e Numbers of arrivals in disjoint time e Independence
Intervals are independent
P(k,7) = Prob. of k arrivals in interval of duration + |® Time homogeneity:
Constant p at each slot
¢ Small interval probabilities:
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(This image is in the public domain.
Source: Wikipedia)
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The Poisson PMF for the number of arrivals
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Mean and variance of the number of arrivals
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Example

e You get emalil according to a Poisson process,
at a rate of A = 5 messages per hour.
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e Mean and variance of mails received during a day = 5"' 2 -
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The time 77 until the first arrival
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e Find the CDF: P(7T1 <t) =
=1-P(T >4)=1-P(o,t) =1-¢e"
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Memorylessness: conditioned on 77 > t,
the PDF of 77 —t is again exponential
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The time Y, of the kth arrival

e Can derive its PDF by first finding the CDF f ( 8

e More intuitive argument:
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Memorylessness and the fresh-start property

e Analogous to the properties for the Bernoulli process

— plausible, given the relation between the two processes

— use intuitive reasoning

— can be proved rigorously



Memorylessness and the fresh-start property
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e If we start watching at time ¢, |—J‘w““"’+*—’f_‘ —
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we see Poisson process, independent of the history until time ¢ > ‘la? ¢ ';"95"?
— time until next arrival: E;{P (A) ) ' u o'w)s?emuole 14.)‘ ol rabzf-

e If we start watching at time 77, T =258
we see Poisson process, independent of the history until time T4

— hence: time between first and second arrival, 7> = Y> — Y7 is: E""p (}\)

— similarly for all T, =Y, — Y1, k> 2 {mol. 0-‘- T
4 N
Y. =T1+4 ---4+ T} is sum of i.i.d. exponentials e An equivalent definition
E[Y.] = k/)\ var(Y;) = k/\2 e A simulation method
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Times of Arrival Continuous Discrete
Arrival Rate A/unit time p/per trial
[ ]
PMF of # of Arrivals Poisson Binomial
Interarrival Time Distr. Exponential Geometric
Time to k-th arrival Erlang Pascal
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Example: Poisson fishing

e Fish are caught as a Poisson process, A = 0.6/hour

— fish for two hours; —

— if you caught at least one fish, stop

l . {

— else continue until first fish is caught

P (fish for more than two hours)= P (o, 2)

I(T, >2)= gc; (¢)olt
2

P (fish for more than two and less than five hours)=

P(0,2) (1-r(0,3))
P(2<¢T <5)> g;";n (4) ol




Example: Poisson fishing

e Fish are caught as a Poisson process, A = 0.6/hour

— fish for two hours; — -

time
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— if you caught at least one fish, stop ? 3
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— else continue until first fish is caught

P(catch at least two fish)=
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Example: Poisson fishing

e Fish are caught as a Poisson process, A = 0.6/hour

— fish for two hours; e tim;

— if you caught at least one fish, stop

— else continue until first fish is caught | c _2_1( timg
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