LECTURE 23: More on the Poisson process
e T he sum of independent Poisson r.v.s
e Merging and splitting

¢ Random incidence



The sum of independent Poisson random variables

e Poisson process of rate A =1

L (AT)ke
e Consecutive intervals of length p and v P(k,7) =

e Numbers of arrivals during these intervals: M and N

o M:

e N:

e Independent?

e M+ N:
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The sum of independent Poisson random variables,

with means/parameters ;. and v,
is Poisson with mean/parameter p + v




Merging of independent Poisson processes
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Where is an arrival of the merged process

P(Red | arrival at time t) =
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P(kth arrival is Red) =

e Independence for different arrivals

P(4 out of first 10 arrivals are Red) =
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The time the first (or the last) light bulb burns out

e T hree lightbulbs

— independent lifetimes X, Y, Z; exponential(})

e Find expected time until first burnout

e X,Y, Z: first arrivals in independent Poisson processes

e Merged process:

e min{X,Y,Z}: 1st arrival in merged process
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The time the first (or the last) light bulb burns out

e T hree lightbulbs

— independent lifetimes X, Y, Z; exponential(})

e Find expected time until all burn out
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Splitting of a Poisson process

e Split arrivals into two streams, using independent coin flips of a coin with bias g

— assume that coin flips are independent from the original Poisson process

time
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time
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Resulting streams are Poisson,
e X B
. P— . rates Ag, A(1 — q) )

e Are the two resulting streams independent?

Surprisingly, yes!



“Random incidence” in the Poisson process

e Poisson process that has been running forever

time

e Believe that A\ = 4/hour, so that E[7T}.] =

e Show up at some time and measure interarrival time

— do it many times, average results, see something around 30 mins! Why?



“Random incidence” in the Poisson process — analysis

time
e Arrive at time t*
e [/: last arrival time e V: next arrival time
o V-U-=
o E[V-U]=

e V —U: interarrival time you see, versus kth interarrival time



Random incidence “paradox” 1S not special to the Poisson process

- =
time

e Example: interrarival times, i.i.d., equally likely to be 5 or 10 minutes

expected value of kth interarrival time:

e Yyou show up at a “random time”

P(arrive during a 5-minute interarrival interval) =

expected length of interarrival interval during which you arrive =

e Calculation generalizes to ‘“renewal processes:"”
i.i.d. interarrival times, from some general distribution

e "Sampling method” matters



Different sampling methods can give different results

e Average family size?

— look at a “random” family (uniformly chosen)
— look at a “random” person’'s (uniformly chosen) family

e Average bus occupancy?
— look at a “random” bus (uniformly chosen)

— look at a “random” passenger’s bus

e Average class size?
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