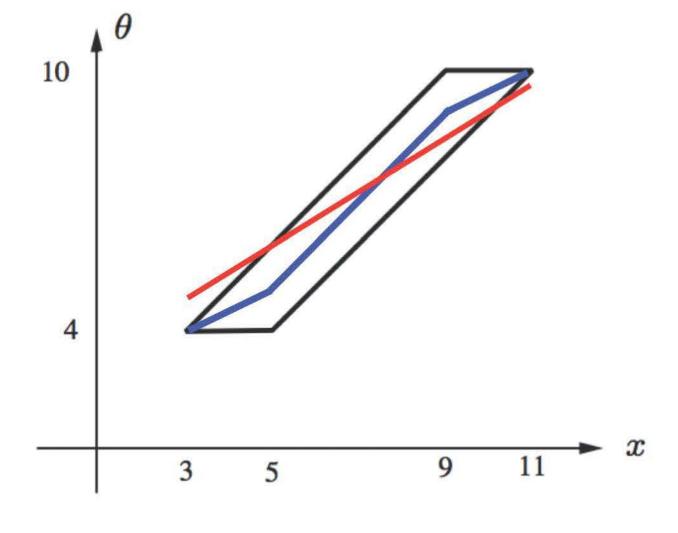
LECTURE 17: Linear least mean squares (LLMS) estimation

- ullet Conditional expectation $\mathbf{E}[\Theta \,|\, X]$ may be hard to compute/implement
- Restrict to estimators $\widehat{\Theta} = aX + b$
 - minimize mean squared error
- Simple solution
- Mathematical properties
- Example

LLMS formulation

Unknown ⊖; observation X



- Minimize $\mathbf{E}[(\widehat{\Theta} \Theta)^2]$
- Estimators $\widehat{\Theta} = g(X) \longrightarrow \widehat{\Theta}_{LMS} = \mathbf{E}[\Theta \mid X]$
- Consider estimators of Θ , of the form $\widehat{\Theta} = aX + b$
- Minimize $\mathbf{E}\left[(\Theta aX b)^2\right]$, w.r.t. a, b
- If $\mathbf{E}[\Theta \mid X]$ is linear in X, then $\widehat{\Theta}_{\mathsf{LMS}} = \widehat{\Theta}_{\mathsf{LLMS}}$

Solution to the LLMS problem

- Minimize $\mathbf{E}\left[(\Theta aX b)^2\right]$, w.r.t. a, b
 - suppose a has already been found:

$$\widehat{\Theta}_L = \mathbf{E}[\Theta] + \frac{\mathsf{Cov}(\Theta, X)}{\mathsf{var}(X)} \left(X - \mathbf{E}[X] \right) = \mathbf{E}[\Theta] + \rho \frac{\sigma_{\Theta}}{\sigma_X} \left(X - \mathbf{E}[X] \right)$$

Remarks on the solution and on the error variance

$$\widehat{\Theta}_L = \mathbf{E}[\Theta] + \frac{\mathsf{Cov}(\Theta, X)}{\mathsf{var}(X)} \left(X - \mathbf{E}[X] \right) = \mathbf{E}[\Theta] + \rho \frac{\sigma_{\Theta}}{\sigma_X} \left(X - \mathbf{E}[X] \right)$$

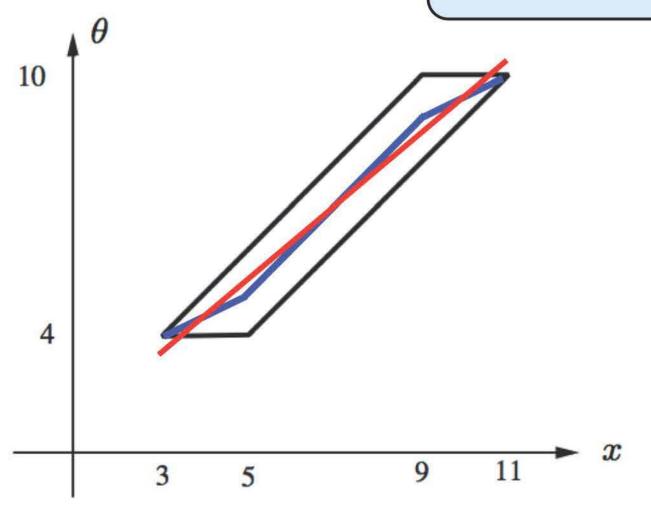
- Only means, variances, covariances matter
- $\rho > 0$:
- $\rho = 0$:

$$\mathbf{E}[(\widehat{\Theta}_L - \Theta)^2] = (1 - \rho^2) \operatorname{var}(\Theta)$$

•
$$|\rho| = 1$$
:

Example

$$\widehat{\Theta}_L = \mathbf{E}[\Theta] + \frac{\mathsf{Cov}(\Theta, X)}{\mathsf{var}(X)} \left(X - \mathbf{E}[X] \right) = \mathbf{E}[\Theta] + \rho \frac{\sigma_{\Theta}}{\sigma_X} \left(X - \mathbf{E}[X] \right)$$



LLMS for inferring the parameter of a coin

- Standard example:
- coin with bias Θ ; prior $f_{\Theta}(\cdot)$
- fix n; X =number of heads
- Assume $f_{\Theta}(\cdot)$ is uniform in [0,1]

$$\widehat{\Theta}_{\mathsf{LMS}} = \frac{X+1}{n+2} = \widehat{\Theta}_{\mathsf{LLMS}}$$

$$\widehat{\Theta}_{\mathsf{LLMS}} = \mathbf{E}[\Theta] + \frac{\mathsf{Cov}(\Theta, X)}{\mathsf{var}(X)} (X - \mathbf{E}[X])$$

LLMS for inferring the parameter of a coin

•
$$\Theta$$
: uniform on $[0,1]$ $\mathbf{E}[\Theta] = \frac{1}{2}$ $\operatorname{var}(\Theta) = \frac{1}{12}$ $\mathbf{E}[\Theta^2]$

•
$$p_{X|\Theta}$$
: $Bin(n,\Theta)$ $E[X|\Theta] = n\Theta$ $var(X|\Theta) = n\Theta(1-\Theta)$

$$\mathbf{E}[X] = \mathbf{E}[X^2 \mid \Theta] =$$

$$E[X^2] =$$

$$var(X) =$$

$$E[\Theta X \mid \Theta] =$$

$$E[\Theta X] =$$

$$cov(\Theta, X) =$$

LLMS for inferring the parameter of a coin

$$\widehat{\Theta}_{\mathsf{LLMS}} = \mathbf{E}[\Theta] + \frac{\mathsf{Cov}(\Theta, X)}{\mathsf{var}(X)} (X - \mathbf{E}[X])$$

$$cov(\Theta, X) = \frac{n}{12}$$
 $var(X) = \frac{n(n+2)}{12}$ $E[X] = \frac{n}{2}$

$$\widehat{\Theta}_{\mathsf{LLMS}} = \frac{X+1}{n+2}$$

LLMS with multiple observations

- Unknown Θ ; observations $X = (X_1, \dots, X_n)$
- Consider estimators of the form: $\widehat{\Theta} = a_1 X_1 + \cdots + a_n X_n + b$
- Find best choices of a_1, \ldots, a_n, b

minimize:
$$\mathbf{E}[(a_1X_1 + \cdots + a_nX_n + b - \Theta)^2]$$

- If $\mathbf{E}[\Theta \mid X]$ is linear in X, then $\widehat{\Theta}_{\mathsf{LMS}} = \widehat{\Theta}_{\mathsf{LLMS}}$
- Solve linear system in b and the a_i
- Only means, variances, covariances matter
- If multiple unknown Θ_i , apply to each one, separately

The simplest LLMS example with multiple observations

$$X_1 = \Theta + W_1$$
 $\Theta \sim x_0, \ \sigma_0^2$ $W_i \sim 0, \ \sigma_i^2$
 \vdots
 $X_n = \Theta + W_n$ Θ, W_1, \dots, W_n uncorrelated

• Suppose Θ, W_1, \dots, W_n are independent normal

$$\widehat{\theta}_{\mathsf{LMS}} = \mathbf{E}[\Theta \,|\, X = x] = \frac{\sum\limits_{i=0}^{n} \frac{x_i}{\sigma_i^2}}{\sum\limits_{i=0}^{n} \frac{1}{\sigma_i^2}} \qquad \qquad \widehat{\Theta}_{\mathsf{LMS}} = \mathbf{E}[\Theta \,|\, X] = \frac{\frac{x_0}{\sigma_0^2} + \sum\limits_{i=1}^{n} \frac{X_i}{\sigma_i^2}}{\sum\limits_{i=0}^{n} \frac{1}{\sigma_i^2}} = \widehat{\Theta}_{\mathsf{LLMS}}$$

- Suppose general (not normal) distributions,
 but same means, variances, as in normal example
 - all covariances also the same
 - solution must be the same

The representation of the data matters in LLMS

- Estimation based on X versus X^3
 - LMS: $E[\Theta \mid X]$ is the same as $E[\Theta \mid X^3]$
 - LLMS is different: estimator $\widehat{\Theta} = aX + b$ versus $\widehat{\Theta} = aX^3 + b$

- can also consider $\widehat{\Theta} = a_1 X + a_2 X^2 + a_3 X^3 + b$
- can also consider $\widehat{\Theta} = a_1 X + a_2 e^X + a_3 \log X + b$

MIT OpenCourseWare https://ocw.mit.edu

Resource: Introduction to Probability John Tsitsiklis and Patrick Jaillet

The following may not correspond to a particular course on MIT OpenCourseWare, but has been provided by the author as an individual learning resource.

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.