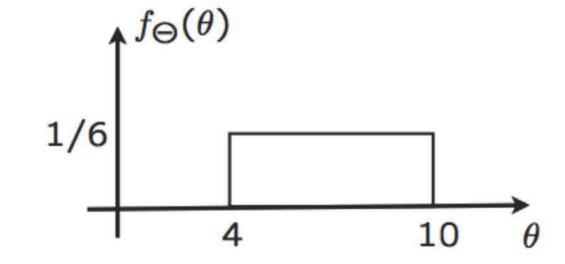
LECTURE 16: Least mean squares (LMS) estimation

- minimize (conditional) mean squared error $\mathbf{E}\left[(\Theta \widehat{\theta})^2 \,|\, X = x\right]$
 - solution: $\widehat{\theta} = \mathbf{E}[\Theta \mid X = x]$
 - general estimation method
- Mathematical properties
- Example

LMS estimation in the absence of observations

- unknown Θ ; prior $p_{\Theta}(\theta)$
 - interested in a point estimate $\hat{\theta}$
 - no observations available
 - MAP rule:
 - (Conditional) expectation:



• Criterion: Mean Squared Error (MSE): $\mathbf{E}\left[(\Theta - \hat{\theta})^2\right]$

minimize mean squared error

LMS estimation in the absence of observations

Least mean squares formulation:

minimize mean squared error (MSE),
$$\mathbf{E}\left[(\Theta - \hat{\theta})^2\right]$$
: $\hat{\theta} = \mathbf{E}[\Theta]$

• Optimal mean squared error: $\mathbf{E}\left[(\Theta - \mathbf{E}[\Theta])^2\right] = \text{var}(\Theta)$

LMS estimation of Θ based on X

- unknown Θ ; prior $p_{\Theta}(\theta)$
 - interested in a point estimate $\hat{\theta}$
- observation X; model $p_{X|\Theta}(x \mid \theta)$
 - observe that X = x

minimize mean squared error (MSE),
$$\mathbf{E}\left[(\Theta - \hat{\theta})^2\right]$$
: $\hat{\theta} = \mathbf{E}[\Theta]$

minimize conditional mean squared error, $\mathbf{E}\left[(\Theta - \hat{\theta})^2 \mid X = x\right]$: $\hat{\theta} = \mathbf{E}[\Theta \mid X = x]$

• LMS estimate: $\hat{\theta} = \mathbf{E}[\Theta | X = x]$

estimator: $\widehat{\Theta} = \mathbf{E}[\Theta \mid X]$

LMS estimation of Θ based on X

• $\mathbf{E}[\Theta]$ minimizes $\mathbf{E}[(\Theta - \hat{\theta})^2]$

• $\mathbf{E}[\Theta | X = x]$ minimizes $\mathbf{E}[(\Theta - \widehat{\theta})^2 | X = x]$

$$\widehat{\Theta}_{\mathsf{LMS}} = \mathbf{E}[\Theta \,|\, X]$$
 minimizes $\mathbf{E}\big[(\Theta - g(X))^2\big]$, over all estimators $\widehat{\Theta} = g(X)$

LMS performance evaluation

• LMS estimate: $\hat{\theta} = \mathbf{E}[\Theta \,|\, X = x]$

estimator: $\widehat{\Theta} = \mathbf{E}[\Theta \mid X]$

Expected performance, once we have a measurement:

$$\mathsf{MSE} = \mathbf{E} \big[\big(\Theta - \mathbf{E} [\Theta \mid X = x] \big)^2 \mid X = x \big] = \mathsf{var} (\Theta \mid X = x)$$

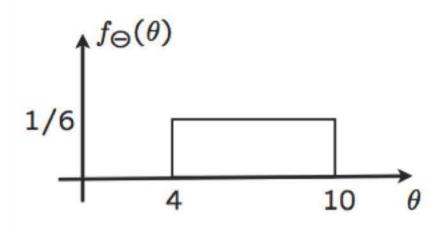
Expected performance of the design:

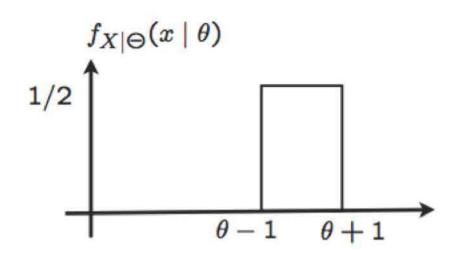
$$MSE = E[(\Theta - E[\Theta \mid X])^{2}] = E[var(\Theta \mid X)]$$

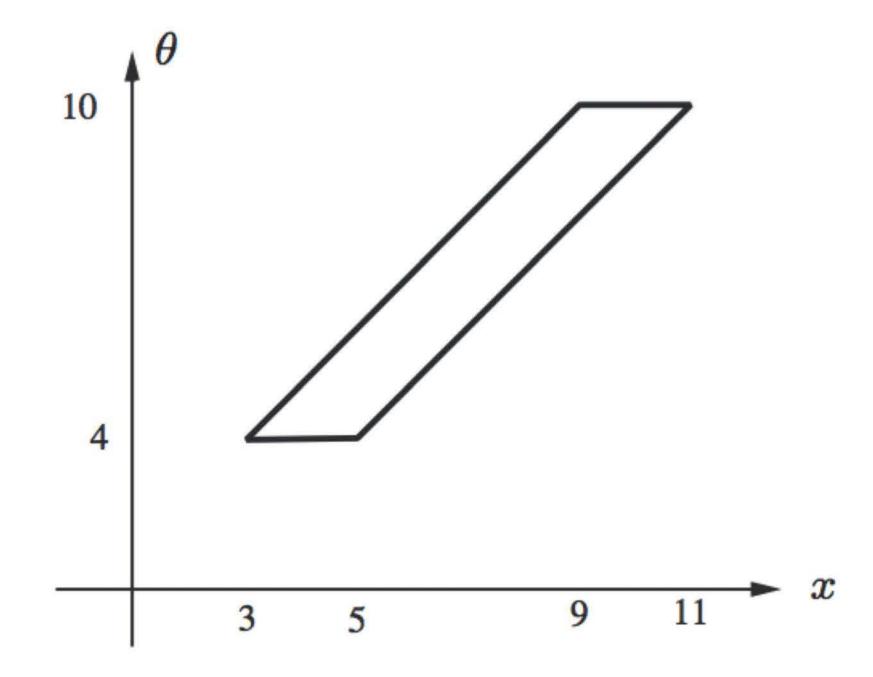
LMS estimation of Θ based on X

- LMS relevant to estimation (not hypothesis testing)
- Same as MAP if the posterior is unimodal and symmetric around the mean
 - e.g., when posterior is normal (the case in "linear-normal" models)

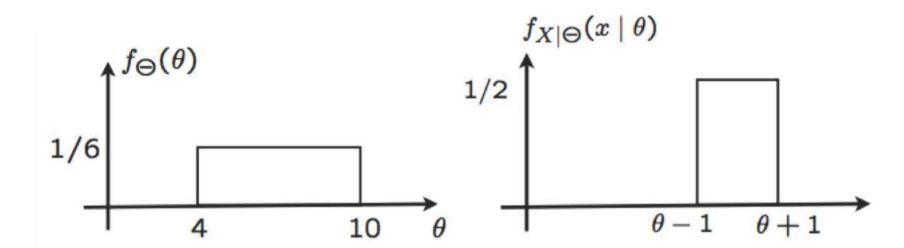
Example



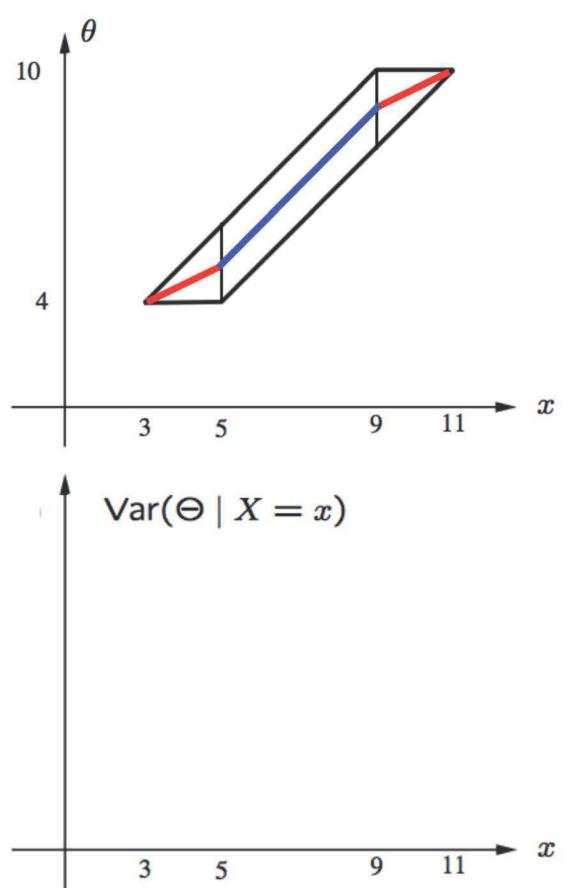




Conditional mean squared error



- same as $Var(\Theta \mid X = x)$: variance of conditional distribution of Θ



LMS estimation with multiple observations or unknowns

- unknown Θ ; prior $p_{\Theta}(\theta)$
 - interested in a point estimate $\hat{\theta}$
- observations $X = (X_1, X_2, \dots, X_n)$; model $p_{X|\Theta}(x \mid \theta)$
 - observe that X = x
 - new universe: condition on X = x
- LMS estimate: $\mathbf{E}[\Theta \mid X_1 = x_1, \dots, X_n = x_n]$

If Θ is a vector, apply to each component separately

Some challenges in LMS estimation

$$f_{\Theta|X}(\theta \mid x) = \frac{f_{\Theta}(\theta) f_{X|\Theta}(x \mid \theta)}{f_{X}(x)}$$
$$f_{X}(x) = \int f_{\Theta}(\theta') f_{X|\Theta}(x \mid \theta') d\theta'$$

- Full correct model, $f_{X|\Theta}(x\,|\,\theta)$, may not be available
- Can be hard to compute/implement/analyze

Properties of the estimation error in LMS estimation

• Estimator:
$$\widehat{\Theta} = \mathbf{E}[\Theta \mid X]$$

• Error:
$$\widetilde{\Theta} = \widehat{\Theta} - \Theta$$

$$\mathbf{E}[\widetilde{\Theta} \,|\, X=x]=0$$

$$cov(\widetilde{\Theta}, \widehat{\Theta}) = 0$$

$$var(\Theta) = var(\widehat{\Theta}) + var(\widetilde{\Theta})$$

MIT OpenCourseWare https://ocw.mit.edu

Resource: Introduction to Probability John Tsitsiklis and Patrick Jaillet

The following may not correspond to a particular course on MIT OpenCourseWare, but has been provided by the author as an individual learning resource.

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.