LECTURE 16: Least mean squares (LMS) estimation

e¢ minimize (conditional) mean squared error E [(@ —0)?2|X = :c]
— solution: § = E[© | X = z]

— general estimation method
e Mathematical properties

e Example



LMS estimation in the absence of observations

e unknown ©; prior pg(f)

2 Jo(6)

— interested in a point estimate 7]

— no observations available 1/6
— MAP rule: _I—_J——J——»
4 10 6

— (Conditional) expectation:

e Criterion: Mean Squared Error (MSE): E [(@ — ?))2}

minimize mean squared error



LMS estimation in the absence of observations

e |Least mean squares formulation:

[ minimize mean squared error (MSE), E [(e — 5)2]: 6 = E[O] ]

[o Optimal mean squared error: E [(e — E[E—)])z] = var(e)]




LMS estimation of © based on X

e unknown ©; prior po(6)

-~

— interested in a point estimate ¢

e observation X; model pxg(z|6)

— oObserve that X =«

¢ LMS estimate: § = E[© | X = z]

estimator: © = E[© | X]



LMS estimation of © based on X

e E[©] minimizes E[(e - 5)2]

e E[©|X = z] minimizes E[(e —0)2|X = :z:]

[ O ms = E[®| X] minimizes E[(e—g(X))z}, over all estimators © = g(X) ]




LMS performance evaluation

¢ LMS estimate: § = E[© | X = z]
estimator: © = E[© | X]

— Expected performance, once we have a measurement:

MSE=E[(@—E[O|X=:B])2|X=:U] =var(e | X =z)

— Expected performance of the design:

MSE = E[(© - E[© | X])z] = E|var(© | X)|



LMS estimation of © based on X

e LMS relevant to estimation (not hypothesis testing)

e Same as MAP if the posterior is unimodal and symmetric around the mean

— e.d., when posterior is normal (the case in “linear—normal” models)



Example
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Conditional mean squared error

fxie(z|6)
A @(9) 4

1/2
1/6

L N

4 10 6 9—1 6+1

e E[(©-E[©|X =2z])?| X =2

— same as Var(© | X = z): variance of
conditional distribution of ©
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Var(© | X = z)
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LMS estimation with multiple observations or unknowns

e unknown ©; prior po(6)

~

— interested in a point estimate ¢

e observations X = (X1, Xo,...,Xy); model lee(:c 16)
— observe that X ==«
— new universe: condition on X =«

e LMS estimate: E[© | X1 =zq,...,Xn = z4]

e If © is a vector, apply to each component separately
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Some challenges in LMS estimation

.

fe(0) fxje(z | 0)
fx(z)

fx(@) = [ fo(@)fxio(z |0 o’

foix(0|z) =

e Full correct model, lee(a:|9), may not be available

e Can be hard to compute/implement/analyze
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Properties of the estimation error in LMS estimation

e Estimator: © = E[© | X]

[E[é|X=x]=OJ

[cov(é, ©)=0 J

[var(@) = var(©) + var(é)J

— e

e Errorr ©o=0 -0
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