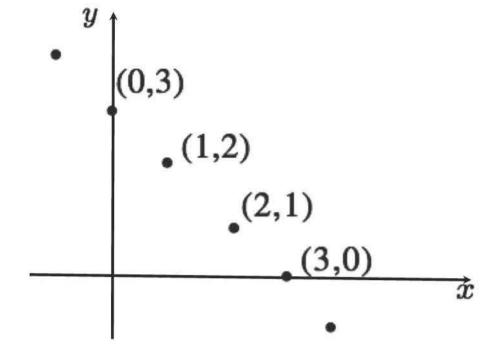
LECTURE 12: Sums of independent random variables; Covariance and correlation

- The PMF/PDF of X + Y (X and Y independent)
- the discrete case
- the continuous case
- the mechanics
- the sum of independent normals
- Covariance and correlation
 - definitions
 - mathematical properties
 - interpretation

The distribution of X + Y: the discrete case

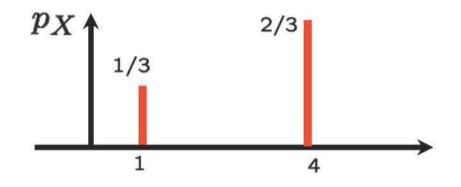
• Z = X + Y; X, Y independent, discrete known PMFs

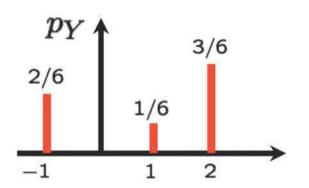
$$p_Z(3) =$$

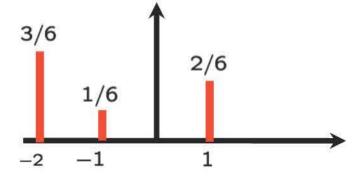


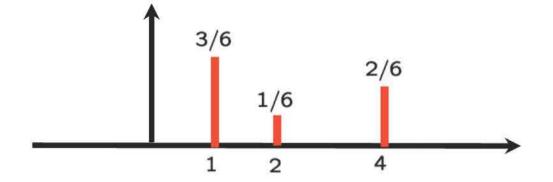
$$p_Z(z) = \sum_x p_X(x) p_Y(z-x)$$

Discrete convolution mechanics









$$p_Z(z) = \sum_x p_X(x) p_Y(z-x)$$

• To find $p_Z(3)$:

- Flip (horizontally) the PMF of Y
- Put it underneath the PMF of X

- Right-shift the flipped PMF by 3
- Cross-multiply and add
- Repeat for other values of z

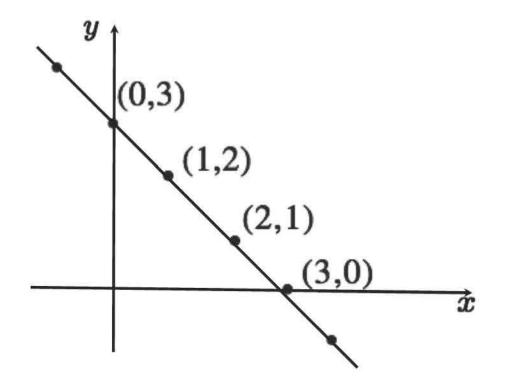
The distribution of X + Y: the continuous case

• Z = X + Y; X, Y independent, continuous known PDFs

 $p_Z(z) = \sum_x p_X(x) p_Y(z-x)$

$$f_Z(z) = \int_{-\infty}^{\infty} f_X(x) f_Y(z-x) dx$$

Conditional on X = x:



Joint PDF of Z and X:

From joint to the marginal:
$$f_Z(z) = \int_{-\infty}^{\infty} f_{X,Z}(x,z) \, dx$$

Same mechanics as in discrete case (flip, shift, etc.)

The sum of independent normal r.v.'s

$$f_Z(z) = \int_{-\infty}^{\infty} f_X(x) f_Y(z-x) dx$$

• $X \sim N(\mu_x, \sigma_x^2)$, $Y \sim N(\mu_y, \sigma_y^2)$, independent

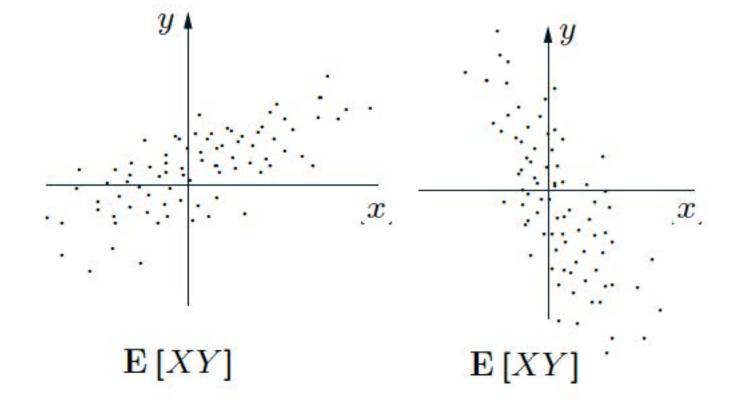
$$Z = X + Y$$

$$\begin{split} f_X(x) &= \frac{1}{\sqrt{2\pi} \, \sigma_x} e^{-(x-\mu_x)^2/2\sigma_x^2} \qquad f_Y(y) = \frac{1}{\sqrt{2\pi} \, \sigma_y} e^{-(y-\mu_y)^2/2\sigma_y^2} \\ f_Z(z) &= \int_{-\infty}^{\infty} f_X(x) f_Y(z-x) \, dx \\ &= \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi} \, \sigma_x} \exp\Big\{-\frac{(x-\mu_x)^2}{2\sigma_x^2}\Big\} \frac{1}{\sqrt{2\pi} \, \sigma_y} \exp\Big\{-\frac{(z-x-\mu_y)^2}{2\sigma_y^2}\Big\} \, dx \\ \text{(algebra)} &= \frac{1}{\sqrt{2\pi} (\sigma_x^2 + \sigma_x^2)} \exp\Big\{-\frac{(z-\mu_x - \mu_y)^2}{2(\sigma_x^2 + \sigma_y^2)}\Big\} \end{split}$$

The sum of finitely many independent normals is normal

Covariance

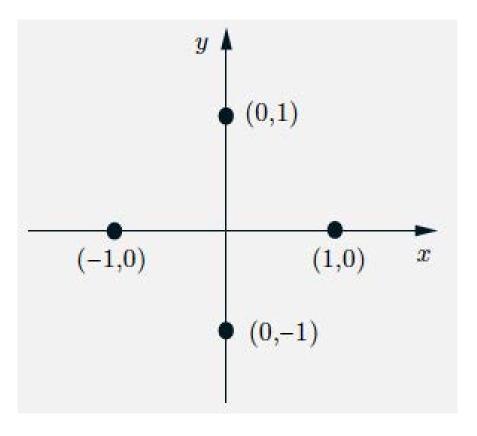
- Zero-mean, discrete X and Y
- if independent: $\mathbf{E}[XY] =$



Definition for general case:

$$cov(X,Y) = \mathbf{E}[(X - \mathbf{E}[X]) \cdot (Y - \mathbf{E}[Y])]$$

• independent \Rightarrow cov(X,Y)=0 (converse is not true)



Covariance properties

$$cov(X, X) =$$

$$cov(aX + b, Y) =$$

$$cov(X, Y + Z) =$$

$$cov(X,Y) = \mathbf{E}[(X - \mathbf{E}[X]) \cdot (Y - \mathbf{E}[Y])]$$

$$cov(X, Y) = E[XY] - E[X]E[Y]$$

The variance of a sum of random variables

$$var(X_1 + X_2) =$$

The variance of a sum of random variables

$$var(X_1 + X_2) = var(X_1) + var(X_2) + 2 cov(X_1, X_2)$$

$$\operatorname{var}(X_1 + \cdots + X_n) =$$

$$var(X_1 + \cdots + X_n) = \sum_{i=1}^n var(X_i) + \sum_{\{(i,j): i \neq j\}} cov(X_i, X_j)$$

The Correlation coefficient

Dimensionless version of covariance:

$$-1 \le \rho \le 1$$

$$\rho(X,Y) = \mathbf{E} \left[\frac{(X - \mathbf{E}[X])}{\sigma_X} \cdot \frac{(Y - \mathbf{E}[Y])}{\sigma_Y} \right]$$
$$= \frac{\text{cov}(X,Y)}{\sigma_X \sigma_Y}$$

- ullet Measure of the degree of "association" between X and Y
- Independent $\Rightarrow \rho = 0$, "uncorrelated" (converse is not true)

- $|\rho| = 1 \Leftrightarrow (X \mathbf{E}[X]) = c(Y \mathbf{E}[Y])$ (linearly related)
- $cov(aX + b, Y) = a \cdot cov(X, Y) \Rightarrow \rho(aX + b, Y) =$

Proof of key properties of the correlation coefficient

$$\rho(X,Y) = \mathbf{E}\left[\frac{(X - \mathbf{E}[X])}{\sigma_X} \cdot \frac{(Y - \mathbf{E}[Y])}{\sigma_Y}\right] \qquad \qquad -1 \le \rho \le 1$$

• Assume, for simplicity, zero means and unit variances, so that $\rho(X,Y) = \mathbf{E}[XY]$

$$\mathbf{E}\Big[(X-\rho Y)^2\Big] =$$

If
$$|\rho|=1$$
, then

Interpreting the correlation coefficient

$$\rho(X,Y) = \frac{\operatorname{cov}(X,Y)}{\sigma_X \sigma_Y}$$

- Association does not imply causation or influence
 - X: math aptitude
 - Y: musical ability
- Correlation often reflects underlying, common, hidden factor
 - Assume, Z, V, W are independent

$$X = Z + V$$
 $Y = Z + W$

Assume, for simplicity, that Z, V, W have zero means, unit variances

Correlations matter...

A real-estate investment company invests \$10M in each of 10 states.
 At each state i, the return on its investment is a random variable X_i, with mean 1 and standard deviation 1.3 (in millions).

$$\operatorname{var}(X_1 + \dots + X_{10}) = \sum_{i=1}^{10} \operatorname{var}(X_i) + \sum_{\{(i,j): i \neq j\}} \operatorname{cov}(X_i, X_j)$$

• If the X_i are uncorrelated, then:

$$var(X_1 + \cdots + X_{10}) =$$

$$\sigma(X_1+\cdots+X_{10})=$$

• If for $i \neq j$, $\rho(X_i, X_j) = 0.9$:

$$\sigma(X_1 + \cdots + X_{10}) =$$

MIT OpenCourseWare https://ocw.mit.edu

Resource: Introduction to Probability John Tsitsiklis and Patrick Jaillet

The following may not correspond to a particular course on MIT OpenCourseWare, but has been provided by the author as an individual learning resource.

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.