

iCub: An Overview

Carlo Ciliberto Laboratory for Computational and Statistical Learning - Istituto Italiano di Tecnologia & MIT CBMM Summer School - Woods Hole 16 Aug. 2015 Image removed due to copyright restrictions. Please see the video.

The Robot

Who: iCub.

What: a "child" humanoid robot.

When: project started in 2004.

Where: IIT, Genova, Italy.

Why: a platform to study the emergence of cognitive capabilities in artificial, embodied systems.

© RobotCub Consortium. License GPL v2.0. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.

The iCub "dads"

Image removed due to copyright restrictions. Please see the video.

Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.

1 Accelerometer and Gyroscope

2 Dragonfly cameras resolution: 640 x 480

Highly dextrous hands: 9 DoFs

Overview

- Height: 1 meter
- Weight: 25 Kg
- 53 Degrees of Freedom (total).
- Force/Torque sensors in each limb.
- Tactile "skin" sensor over (almost) the whole body.
- 2 Microphones mounted on the head.

iCub is involved in many projects...

italk

2015

© RobotCub Consortium. License GPL v2.0. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.

2014

2012

2004

2010

Force/Torque Sensors

One for each limb!

Teaching Actions

https://www.youtube.com/watch?v=ZcTwO2dpX8A

© RobotCub Consortium. License GPL v2.0. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.

Artificial Skin

ground plane: e.g. conductive fabric **parameters:** mechanical properties, impedance, etc.

© Source Unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.

© Source Unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information,see https:// ocw.mit.edu/help/faq-fair-use/.

soft material: e.g. silicone **parameters:** dielectric constant, mechanical stiffness, etc.

© Source Unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.

electrodes: etched on a flexible PCB **parameters:** shape, folding, etc.

© Source Unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.

Artificial Skin

No Tactile feedback

With Tactile feedback

© RobotCub Consortium. License GPL v2.0. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.

https://www.youtube.com/watch?v=S7Kk6KEw3C4

Left Forearm Skin

The target of the doubleTouch is detected through the tactile system

2012

2004

2010

Right Hand Skin

Skin Self-Calibration

Roncone A., et al. Automatic kinematic chain calibration using artificial skin: self-touch in the iCub humanoid robot. ICRA 2014

Visuo/Motor Calibration Fanello S.R. et al. 3D Stereo Estimation and Fully

Fanello S.R. et al. 3D Stereo Estimation and Fully Automated Learning of Eye-Hand Coordination in Humanoid Robots, Humanoids 2014

https://www.youtube.com/watch?v=mQpVCSM8Vgc

iCub

One-foot balancing via external force control

2010

2004

2012

2014

2015

© RobotCub Consortium. License GPL v2.0. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.

Enjoy the school!

MIT OpenCourseWare https://ocw.mit.edu

Resource: Brains, Minds and Machines Summer Course Tomaso Poggio and Gabriel Kreiman

The following may not correspond to a particular course on MIT OpenCourseWare, but has been provided by the author as an individual learning resource.

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.