
Eero Simoncelli
HHMI / New York University

Probing sensory representations 
with metameric stimuli

Tuesday, August 25, 15 1



[figure: Hubel ‘95]
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Metamers

• Two stimuli that are physically different, 
but appear the same to a human observer

• Classic example: trichromatic color 
perception

• Another example: texture perception
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Spectral nature of light

[Newton, 1665]
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This image is in the public domain.

Diagram of a prism removed due to copyright
restrictions. Please see the video.

5



p
o
w
e
r

wavelength

0

500

1000

1500

400 450 500

P
o
w

e
r 

(a
rb

it
ra

ry
 u

n
it
s
)

550 600 650 700

Wavelength (nm)

Test Light
Primary
Mixture

Basic Color Matching

Quantifying Matches: Color Matching Experiment

Monday, June 21, 2010

From “DB SID Slides”, 

CT-21

Arbitrary
test light

Mixture of
3 primary lights

Perceptual color matching experiment
p
o
w
e
r

wavelength

[Young, Helmholtz, Grassman, etc, 1800‘s;  slide c/o D. Brainard]

Tuesday, August 25, 15

Courtesy of David Brainard. Used with permission.

6



Perceptual color matching experiment
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Theory (Grassman, 1853): the visual system performs a 
linear projection of the wavelength spectrum onto a 
three-dimensional response space

L N

• Predicts/explains perceptual “metamers” - lights that appear 
identical, but have physically distinct wavelength spectra (1800’s)

• Codified in CIE standards for color representation (1931)

• Underlying mechanism (cone photoreceptors) verified (1987)
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Suction Microelectrode

Monday, June 21, 2010

RP-14, 

CD-5

[Baylor, Nunn & Schnapf, 1987]

Baylor, Nunn, & Schnapf (1987)

Measured Primate L, M, S Spectral Sensitivities (Log Scale)

Monday, June 21, 2010
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Figure removed due to copyright restrictions. Please see the video.

Source: Figure 3 from Baylor, D. A., B. J. Nunn, and J. L. Schnapf.

"Spectral sensitivity of cones of the monkey Macaca fascicularis."

The Journal of Physiology 390, no. 1 (1987): 145-160.

Courtesy of Denis Baylor. Used with permission.
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Visual texture

Homogeneous, with repeated structures
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Julesz (1962)

• Hypothesis: Two textures with identical Nth-order 
pixel statistics will appear the same (for some N).

• Hand-constructed counter-examples (N=3):

Julesz ‘78 Yellott ‘93 
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Physiologically-inspired 
Julesz-style texture model

[Portilla & Simoncelli, 2000]
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Physiologically-inspired 
Julesz-style texture model
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Texture synthesis
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Images

Model responses
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Images with 
identical
model responsesnoise seed

synthesized
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Experimental logic

If model captures the same properties as the visual system, 
images with identical model responses should appear 
identical to a human. 

Original 

Photographic 

Image

Random 

Seed 

Image

Statistical  

Image    

Generator

Ventral

Model 

Responses

Retina
Optic
Nerve

LGN
Optic
Tract

Visual
Cortex

Model
Responses

Tuesday, August 25, 15 18

© Harvard Medical School. All rights reserved. This content
is excluded from our Creative Commons license. For more
information, see https://ocw.mit.edu/help/faq-fair-use/.

https://ocw.mit.edu/help/faq-fair-use/


Pairs of images with identical model responses:

Top: original,   Bottom: synthesized

[Portilla & Simoncelli 2000]
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Other explorations:
* inpainting
* interpolation
* seeds

64 Portilla and Simoncelli

3.3. Extensions

As a demonstration of the flexibility of our approach,
we can modify the algorithm to handle applications
of constrained texture synthesis. In particular, con-
sider the problem of extending a texture image be-
yond its spatial boundaries (spatial extrapolation). We
want to synthesize an image in which the central pix-
els contain a copy of the original image, and the sur-
rounding pixels are synthesized based on the statis-
tical measurements of the original image. The set of
all images with the same central subset of pixels is
convex, and the projection onto such a convex set is
easily inserted into the iterative loop of the synthe-
sis algorithm. Specifically, we need only re-set the
central pixels to the desired values on each iteration
of the synthesis loop. In practice, this substitution is
done by multiplying the desired pixels by a smooth
mask (a raised cosine) and adding this to the cur-
rent synthesized image multiplied by the complement
of this mask. The smooth mask prevents artifacts at
the boundary between original and synthesized pixels,
whereas convergence to the desired pixels within the
mask support region is achieved almost perfectly. This
technique is applicable to the restoration of pictures
which have been destroyed in some subregion (“fill-
ing holes”) (e.g., Hirani and Totsuka, 1996), although
the estimation of parameters from the defective image
is not straightforward. Figure 19 shows a set of ex-
amples that have been spatially extrapolated using this
method. Observe that the border between real and syn-
thetic data is barely noticeable. An additional poten-
tial benefit is that the synthetic images are seamlessly
periodic (due to circular boundary-handling within
our algorithm), and thus may be used to tile a larger
image.
Finally,we consider the problemof creating a texture

that lies visually “in between” two other textures. The
parameter space consisting of spatial averages of local
functions has a type of convexity property in the limit as
the image lattice grows in size.3 Figure 20 shows three
images synthesized from parameters that are an aver-
age of the parameters for two example textures. In all
three cases, the algorithm converges to an interesting-
looking image that appears to be a patchwise mix-
tures of the two initial textures, rather than a new
homogeneous texture that lies perceptually between
them. Thus, in our model, the subset of parameters
corresponding to textures (homogeneous RFs) is not
convex!

Figure 19. Spatial extrapolation of texture images. Upper left cor-
ner: example of an initial image to be extrapolated. Center shows an
example texture image, surrounded by a black region indicating the
pixels to be synthesized. Remaining images: extrapolated examples
(central region of constrained pixels is the same size and shape in all
examples).

Figure 20. Examples of “mixture” textures. Left: text (Fig. 19) tile
mosaic (Fig. 3);Middle: lizard skin (Fig. 14) andwoven cane (Fig. 4);
Right: plaster (Fig. 15) and brick (Fig. 14).

4. Discussion

We have described a universal parametric model for
visual texture, based on a novel set of pairwise joint
statistical constraints on the coefficients of a multi-
scale image representation.We have described a frame-
work for testing the perceptual validity of this model
in the context of the Julesz conjecture, and devel-
oped a novel algorithm for synthesizing model tex-
tures using sequential projections onto the constraint
surfaces. We have demonstrated the necessity of sub-
sets of our constraints by showing examples of tex-
tures for which synthesis quality is substantially de-
creased when that subset is removed from the model.
And we have shown the power and flexibility of
the model by synthesizing a wide variety of artifi-
cial and natural textures, and by applying it to the

“outpainting”

Central square of 
each image is 

original texture.
Surround is 

synthesized.
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Structural seeding   [cf. “adversarial examples” - Szegedy et. al. 2014]
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Can we generalize to 
inhomogeneous stimuli?

Can we make the model 
more physiological?

Tuesday, August 25, 15 22

© Springer. All rights reserved. This content is excluded
from our Creative Commons license. For more information,
see https://ocw.mit.edu/help/faq-fair-use/.
Source: Portilla, Javier, and Eero P. Simoncelli. "A parametric
texture model based on joint statistics of complex wavelet
coefficients." International journal of computer vision 40, no.1
(2000): 49-70.

https://ocw.mit.edu/help/faq-fair-use/


Retina
Optic
Nerve

LGN
Optic
Tract

Visual
Cortex
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Retina
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Nerve

LGN
Optic
Tract

Visual
Cortex

[Ungerleider & Mishkin, 1982]

Dorsal pathway: V1->V3->V5
position, motion, action

Ventral pathway: V1->V2->V4-> IT
spatial form, recognition, memory
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Retina
Optic
Nerve

LGN
Optic
Tract

Visual
Cortex

• Visual neurons responds to content within 
a small region of the visual input known as 
the Receptive Field (RF)
• In each visual area, we assume RFs cover 
the entire visual field
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Retinal ganglion (midget)
 cell receptive fields
(macaque, magnified x10)
 [Perry et.al., 1984;
  Watanabe & Rodiek, 1989]

Inhomogeneity - RF sizes grow with eccentricity

Modified Snellen acuity chart
(threshold, x10)
 [after Anstis, 1973]
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[after Geisler et al., 1999]
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Retina

[Freeman & Simoncelli 2011, 
data from  Gattass et. al., 1981; Gattass et. al., 1988; Perry et. al., 1984]

RF sizes grow with eccentricity
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Reprinted by permission from Macmillan Publishers Ltd: Nature.
Source: Freeman, Jeremy, and Eero P. Simoncelli. "Metamers of the ventral
stream." Nature neuroscience 14, no. 9 (2011): 1195 -1201. © 2011.
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[Freeman & Simoncelli, 2011]
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D. H. HUBEL AND T. N. WIESEL
field such as that of Text-fig. 2F) are of the same order of magnitude as
the diameters of geniculate receptive-field centres, at least for fields in or
near the area centralis. Hence the fineness of discrimination implied by
the small size of geniculate receptive-field centres is not necessarily lost at
the cortical level, despite the relatively large total size of many cortical
fields; rather, it is incorporated into the detailed substructure of the
cortical fields.

Text-fig. 19. Possible scheme for explaining the organization of simple receptive
fields. A large number of lateral geniculate cells, of which four are illustrated in
the upper right in the figure, have receptive fields with 'on' centres arranged along
a straight line on the retina. All of these project upon a single cortical cell, and the
synapses are supposed to be excitatory. The receptive field of the cortical cell will
then have an elongated 'on' centre indicated by the interrupted lines in the
receptive-field diagram to the left of the figure.

In a similar way, the simple fields of Text-fig. 2D-G may be constructed
by supposing that the afferent 'on'- or 'off'-centre geniculate cells have
their field centres appropriately placed. For example, field-type G could
be formed by having geniculate afferents with 'off' centres situated in the
region below and to the right of the boundary, and 'on' centres above and
to the left. An asymmetry of flanking regions, as in field E, would
be produced if the two flanks were unequally reinforced by 'on'-centre
afferents.
The model of Text-fig. 19 is based on excitatory synapses. Here the

suppression of firing on illuminating an inhibitory part of the receptive
field is presumed to be the result of withdrawal of tonic excitation, i.e. the
inhibition takes place at a lower level. That such mechanisms occur in the
visual system is clear from studies of the lateral geniculate body, where
an 'off'-centre cell is suppressed on illuminating its field centre because of
suppression of firing in its main excitatory afferent (Hubel & Wiesel, 1961).
In the proposed scheme one should, however, consider the possibility of
direct inhibitory connexions. In Text-fig. 19 we may replace any of the
excitatory endings by inhibitory ones, provided we replace the corre-
sponding geniculate cells by ones of opposite type ('on '-centre instead of
' off'-centre, and conversely). Up to the present the two mechanisms have

142

[Hubel & Wiesel, 1962]

V1 simple cell

CAT VISUAL CORTEX1
not been distinguished, but there is no reason to think that both do not
occur.
The properties of complex fields are not easily accounted for by sup-

posing that these cells receive afferents directly from the lateral geniculate
body. Rather, the correspondence between simple and complex fields
noted in Part I suggests that cells with complex fields are of higher order,
having cells with simple fields as their afferents. These simple fields would
all have identical axis orientation, but would differ from one another in
their exact retinal positions. An example of such a scheme is given in
Text-fig. 20. The hypothetical cell illustrated has a complex field like that

Text-fig. 20. Possible scheme for explaining the organization of complex receptive
fields. A number of cells with simple fields, ofwhich three are shown schematically,
are imagined to project to a single cortical cell of higher order. Each projecting
neurone has a receptive field arranged as shown to the left: an excitatory region to
the left and an inhibitory region to the right of a vertical straight-line boundary.
The boundaries of the fields are staggered within an area outlined by the inter-
rupted lines. Any vertical-edge stimulus falling across this rectangle, regardless
of its position, will excite some simple-field cells, leading to excitation of the higher-
order cell.

of Text-figs. 5 and 6. One may imagine that it receives afferents from a set
of simple cortical cells with fields of type C, Text-fig. 2, all with vertical
axis orientation, and staggered along a horizontal line. An edge of light
would activate one or more of these simple cells wherever it fell within the
complex field, and this would tend to excite the higher-order cell.

Similar schemes may be proposed to explain the behaviour of other
complex units. One need only use the corresponding simple fields as
building blocks, staggering them over an appropriately wide region. A
cell with the properties shown in Text-fig. 3 would require two types of
horizontally oriented simple fields, having 'off' centres above the hori-
zontal line, and 'on' centres below it. A slit of the same width as these
centre regions would strongly activate only those cells whose long narrow

143

V1 complex cell

linear
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nonlinearity

+
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Figure removed due to copyright restrictions. Please see the video.

Source: Hubel, David H., and Torsten N. Wiesel. "Receptive fields,

binocular interaction and functional architecture in the cat's visual

cortex." The Journal of physiology 160, no. 1 (1962): 106-154.
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Canonical computation
in the ventral stream

Substantial information loss =>  model predicts metamers
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Canonical sensory computation

• Linear filter (determines pattern selectivity)

• Rectifying nonlinearity

• Local pooling (e.g., average, max)

• Local gain control

• Noise

[eg. Douglas, 1989;
  Heeger, Simoncelli & Movshon 1996;

Heeger & Carandini 2014]  

Cascaded ...
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news and views

In Arthur Conan Doyle’s story Silver
Blaze, Inspector Gregory from Scotland
Yard asks Sherlock Holmes “Is there any
point to which you would wish to draw
my attention?”, to which Holmes replies
“To the curious incident of the dog in the
night-time.” “The dog did nothing in the
night-time.” “That was the curious inci-
dent.” The point of this well known
exchange is, of course, that the dog did
not bark because the criminal was a per-
son it knew well and expected. Predictive
coding of sensory stimuli in nervous sys-
tems has a similar flavor. It is an encoding
strategy in which predictable features in
the input are suppressed, and only the
unexpected is signaled to the next stage of
processing.

Almost from the start of the informa-
tion age, theorists have argued that such
a coding strategy is very efficient and is
likely to be widely used in natural sensory
systems. In particular, predictive coding
has been invoked to explain the detailed
shape of the spatio-temporal receptive
fields of neurons in the retina and lateral
geniculate nucleus of mammals (for
review, see ref. 1). The visual cortex, how-
ever, with its complex and sometimes
highly nonlinear receptive-field proper-
ties, has proven resistant to these ideas.
No more, though. The study by Rao and
Ballard2 in this issue of Nature Neuro-
science provides a detailed account of how
predictive coding can explain extra-clas-
sical receptive-field effects of neurons in
primary visual cortex (V1) and beyond.

The basic idea behind hierarchical pre-
dictive coding is simple. It starts with the
question of how images of natural scenes
should be analyzed. An obvious answer is

expected, or predicted, image features. Due
to the convergence of spatially adjacent
modules onto the next higher level, the
receptive fields become progressively larg-
er as one ascends the hierarchy. Learning
of the synaptic weights of the units in each
stage—which can be thought of as their
receptive fields—is unsupervised, that is,
it does not require an external ‘teacher’ that
rewards or punishes individual choices.

Using a two-stage prediction network,
Rao and Ballard demonstrate how units
in their first stage come to show ‘end-
stopping’ (a defining feature of the
‘hypercomplex’ cells of Hubel and
Wiesel). Such a cell responds strongly to
an appropriately oriented bar of a certain
length. As the length of the bar is
increased—extending into an area sur-
rounding the cell’s classical receptive
field—the response decreases until the
cell ceases to fire. End-stopping in these
predictive-coding units results from the
character of the natural images used in
training. As Rao and Ballard show direct-
ly, their training images (natural scenes
inhabited by animals, trees, rocks and so
on) contain edges at different orienta-
tions but at a preferred scale; short bars
are much less likely to occur than longer
ones. During training, units in the sec-
ond stage of the system come to expect
such elongated edges and signal this to
the lower stage. The firing rate of first-

in terms of frequently occurring features,
such as blobs of opposing polarity, orient-
ed edges, curved line segments and so on.
A significant fraction of all images can be
decomposed in terms of these more ele-
mentary features. In other words, a clever
visual system that grew up in the natural
world would not be surprised to find these
features in real images. What is informa-
tive, however, are deviations from the
norm, and in predictive coding, only these
unexpected features are signaled to the next
stage. Applied iteratively, this strategy leads
to the following hierarchical network (see
Fig. 1 in Rao and Ballard): at each stage of
processing, the input from the previous
stage is analyzed in terms of certain learned
features. Each stage signals to the next the
difference between these expected image
features and the actual image, and each
stage sends back to the one below it the

Christof Koch is at the Computation and Neural
Systems Program, California Institute of
Technology, Pasadena, California 91125, USA.
Tomaso Poggio is at CBCL in the Brain Sciences
Department and in the AI Lab at MIT,
Cambridge, Massachusetts 02142, USA.
email: koch@klab.caltech.edu and
tp@ai.mit.edu

Fig. 1. A purely feedfor-
ward model10 can
account for the available
quantitative data on
view-tuned inferotempo-
ral cells. The model is an
hierarchical extension of
the classical Hubel and
Wiesel approach of
building complex cells
from simple cells. It is the
first demonstration that
hierarchical schemes of
biological neurons can
account quantitatively
for both the physiology
and the psychophysics of
high-level object recogni-
tion. The model consists
of sequences of layers
with linear (blue arrows)
and nonlinear operations
(green arrows), similar
to logical AND and OR
gates. These two types of operations respectively provide pattern specificity and transforma-
tion invariance. The nonlinear MAX operation, similar to a winner-take-all over all inputs of
the cell, is key to the model’s properties and is quite different from the basically linear sum-
mation of inputs usually assumed for complex cells. (Riesenhuber and Poggio, unpublished).

Input image

Simple cells

Complex cells

Composite features

View-tuned cells

Predicting the visual world:
silence is golden
Christof Koch and Tomaso Poggio

In predictive coding, only unexpected input features are
signaled to the next stage of processing. Rao and Ballard use
this approach to model extra-classical receptive field effects. 

nature neuroscience  •  volume 2  no 1  •  january 1999 9

[Koch & Poggio, 1999;   
cf. Fukishima, 1980; 

Serre, Oliva, Poggio 2007; etc] 
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Reprinted by permission from Macmillan Publishers Ltd: Nature.
Source: Koch, Christof, and Tomaso Poggio. "Predicting the visual world:
Silence is golden." Nature neuroscience 2, no. 1 (1999): 9-10. © 1999.
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Courtesy of Elsevier, Inc., http://www.sciencedirect.com. Used with permission.
Source: Cohen, Michael A., Daniel C. Dennett, and Nancy Kanwisher. "What is the bandwidth
of perceptual experience?" Trends in Cognitive Sciences 20, no. 5 (2016): 324-335.
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Courtesy of Elsevier, Inc., http://www.sciencedirect.com. Used with permission.
Source: Cohen, Michael A., Daniel C. Dennett, and Nancy Kanwisher. "What is the bandwidth
of perceptual experience?" Trends in Cognitive Sciences 20, no. 5 (2016): 324-335.
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Reprinted by permission from Macmillan Publishers Ltd: Nature.
Source: Freeman, Jeremy, and Eero P. Simoncelli. "Metamers of the ventral
stream." Nature neuroscience 14, no. 9 (2011): 1195 -1201. © 2011.
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Retina

[Freeman & Simoncelli 2011, 
from Gattass et. al., 1981; Gattass et. al., 1988; Perry et. al., 1984]

RF sizes grow with eccentricity
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Reprinted by permission from Macmillan Publishers Ltd: Nature.
Source: Freeman, Jeremy, and Eero P. Simoncelli. "Metamers of the ventral
stream." Nature neuroscience 14, no. 9 (2011): 1195 -1201. © 2011.



[Allman & Kaas, 1971; Allman & Kaas, 1974; Gattass et.al., 1981; van Essen et.al., 1984; 
Maguire & Baizer, 1984; Burkhalter & van Essen, 1986;  Gattass et.al., 1987; Desimone & 
Schein, 1987; Gattass et.al., 1988; Cavanaugh et. al., 2002]
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[Freeman & Simoncelli, 2011]
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Reprinted by permission from Macmillan Publishers Ltd: Nature.
Source: Freeman, Jeremy, and Eero P. Simoncelli. "Metamers of the ventral
stream." Nature neuroscience 14, no. 9 (2011): 1195 -1201. © 2011.
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Reprinted by permission from Macmillan Publishers Ltd: Nature.
Source: Freeman, Jeremy, and Eero P. Simoncelli. "Metamers of the ventral
stream." Nature neuroscience 14, no. 9 (2011): 1195 -1201. © 2011.
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used to generate the stimuli. Dark gray points: mid-ventral model (see Fig. 2). Light gray points: V1 model (see 
Supplementary Fig. 2). Shaded region, 68% confidence interval obtained using bootstrapping. Gray horizontal 
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Reprinted by permission from Macmillan Publishers Ltd: Nature.
Source: Freeman, Jeremy, and Eero P. Simoncelli. "Metamers of the ventral
stream." Nature neuroscience 14, no. 9 (2011): 1195 -1201. © 2011.
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[Freeman & Simoncelli, 2011]

[Allman & Kaas, 1971; Allman & Kaas, 1974; Gattass et.al., 1981; van Essen et.al., 1984; 
Maguire & Baizer, 1984; Burkhalter & van Essen, 1986;  Gattass et.al., 1987; Desimone & 
Schein, 1987; Gattass et.al., 1988; Cavanaugh et. al., 2002]
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Reprinted by permission from Macmillan Publishers Ltd: Nature.
Source: Freeman, Jeremy, and Eero P. Simoncelli. "Metamers of the ventral
stream." Nature neuroscience 14, no. 9 (2011): 1195 -1201. © 2011.



Reading

b

c

a Figure 7. Effects of crowding 
on reading and searching. 
�H�°Two metamers, matched 
to the model responses of a 
page of text from the first 
paragraph of Herman 
Melville’s “Moby Dick”. Each 
metamer was synthesized 
using a different foveal 
location (the letter above each 
red dot). These locations are 
separated by the distance 
readers typically traverse 
between fixations49. In each 
metamer, the central word is 
largely preserved; farther in 
the periphery the text is 
letter-like but scrambled, as if 
printed with non-latin 
characters. Note that the 
boundary of readability in the 
first image roughly coincides 
with the location of the fixation 
in the second image. We 
emphasize that these are 
samples drawn from the set of 
images that are perceptually 
metameric; although they 
illustrate the kinds of 
distortions that result from the 
model, no single example 
represents “what an observer 
sees” in the periphery. (b) The 
notoriously hard-to-find 
“Waldo” (character with the 
red and white striped shirt) 
blends into the distracting 
background, and is only 
recognizable when we (or the 
model) look right at him. 
Cross-hairs surrounding each 
image indicate the location of 
the model fovea. (c) A soldier 
in Afghanistan wears 
sandy-stone patterned 
clothing to match the stoney 
texture of the street, and 
similarly blends into the 
background.

[Freeman & Simoncelli, 2011]
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a Figure 7. Effects of crowding 
on reading and searching. 
�H�°Two metamers, matched 
to the model responses of a 
page of text from the first 
paragraph of Herman 
Melville’s “Moby Dick”. Each 
metamer was synthesized 
using a different foveal 
location (the letter above each 
red dot). These locations are 
separated by the distance 
readers typically traverse 
between fixations49. In each 
metamer, the central word is 
largely preserved; farther in 
the periphery the text is 
letter-like but scrambled, as if 
printed with non-latin 
characters. Note that the 
boundary of readability in the 
first image roughly coincides 
with the location of the fixation 
in the second image. We 
emphasize that these are 
samples drawn from the set of 
images that are perceptually 
metameric; although they 
illustrate the kinds of 
distortions that result from the 
model, no single example 
represents “what an observer 
sees” in the periphery. (b) The 
notoriously hard-to-find 
“Waldo” (character with the 
red and white striped shirt) 
blends into the distracting 
background, and is only 
recognizable when we (or the 
model) look right at him. 
Cross-hairs surrounding each 
image indicate the location of 
the model fovea. (c) A soldier 
in Afghanistan wears 
sandy-stone patterned 
clothing to match the stoney 
texture of the street, and 
similarly blends into the 
background.

[Freeman & Simoncelli, 2011]
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© Nature. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.
Source: Freeman, Jeremy, and Eero P. Simoncelli. "Metamers of the ventral stream."
Nature neuroscience 14, no. 9 (2011): 1195-1201. © 2011.
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Can we drive individual V2 neurons using local 
texture stimuli?

Top: synthetic textures, full model
Bottom: “spectral noise” (matched only for “V1” statistics)

[Freeman, et. al. 2013]
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Reprinted by permission from Macmillan Publishers Ltd: Nature.

Source: Freeman, Jeremy, Corey M. Ziemba, David J. Heeger, Eero P. Simoncelli, and J. Anthony Movshon. "A functional and
perceptual signature of the second visual area in primates." Nature neuroscience 16, no. 7 (2013): 974-981. © 2013.
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Reprinted by permission from Macmillan Publishers Ltd: Nature.

Source: Freeman, Jeremy, Corey M. Ziemba, David J. Heeger, Eero P. Simoncelli, and J. Anthony Movshon. "A functional and
perceptual signature of the second visual area in primates." Nature neuroscience 16, no. 7 (2013): 974-981. © 2013.
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Reprinted by permission from Macmillan Publishers Ltd: Nature.

Source: Freeman, Jeremy, Corey M. Ziemba, David J. Heeger, Eero P. Simoncelli, and J. Anthony Movshon. "A functional and
perceptual signature of the second visual area in primates." Nature neuroscience 16, no. 7 (2013): 974-981. © 2013.
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Reprinted by permission from Macmillan Publishers Ltd: Nature.

Source: Freeman, Jeremy, Corey M. Ziemba, David J. Heeger, Eero P. Simoncelli, and J. Anthony Movshon. "A functional and
perceptual signature of the second visual area in primates." Nature neuroscience 16, no. 7 (2013): 974-981. © 2013.
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Reprinted by permission from Macmillan Publishers Ltd: Nature.

Source: Freeman, Jeremy, Corey M. Ziemba, David J. Heeger, Eero P. Simoncelli, and J. Anthony Movshon. "A functional and
perceptual signature of the second visual area in primates." Nature neuroscience 16, no. 7 (2013): 974-981. © 2013.
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Courtesy of Proceedings of the National Academy of Science. Used with permission.
Source: Ziemba, Corey M., Jeremy Freeman, J. Anthony Movshon, and Eero P. Simoncelli. "Selectivity and tolerance
for visual texture in macaque V2." Proceedings of the National Academy of Sciences 113, no. 22 (2016): E3140-E3149.
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Anesthetized macaque
• V1: 102 neurons 
• V2: 103 neurons

Stimuli presented for 100ms 
within a 4° aperture

20 repetitions each
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Courtesy of Proceedings of the National Academy of Science. Used with permission.
Source: Ziemba, Corey M., Jeremy Freeman, J. Anthony Movshon, and Eero P. Simoncelli. "Selectivity and tolerance for visual texture
in macaque V2." Proceedings of the National Academy of Sciences 113, no. 22 (2016): E3140-E3149.
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Example V2 neuronAnesthetized macaque
• V1: 102 neurons 
• V2: 103 neurons

Stimuli presented for 100ms 
within a 4° aperture

20 repetitions each
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Courtesy of Proceedings of the National Academy of Science. Used with permission.
Source: Ziemba, Corey M., Jeremy Freeman, J. Anthony Movshon, and Eero P. Simoncelli. "Selectivity and tolerance for visual texture
in macaque V2." Proceedings of the National Academy of Sciences 113, no. 22 (2016): E3140-E3149.



V1
n = 102

0

80

Variance across samples (%)

n = 103
V2

0 80

0

80

Va
ria

nc
e 

ac
ro

ss
 fa

m
ilie

s 
(%

)

Variance across exemplars (%)

V1
n = 102

0

80

Variance across samples (%)

n = 103
V2

0 80

0

80

Va
ria

nc
e 

ac
ro

ss
 fa

m
ilie

s 
(%

)

V
a
ri

a
n
c
e
 a

c
ro

s
s
 f
a

m
ili

e
s
 (

%
)

0 80

Tuesday, August 25, 15 60

Courtesy of Proceedings of the National Academy of Science. Used with permission.
Source: Ziemba, Corey M., Jeremy Freeman, J. Anthony Movshon, and Eero P. Simoncelli. "Selectivity and tolerance for visual
texture in macaque V2." Proceedings of the National Academy of Sciences 113, no. 22 (2016): E3140-E3149.
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Courtesy of Proceedings of the National Academy of Science. Used with permission.
Source: Ziemba, Corey M., Jeremy Freeman, J. Anthony Movshon, and Eero P. Simoncelli. "Selectivity and tolerance for visual texture
in macaque V2." Proceedings of the National Academy of Sciences 113, no. 22 (2016): E3140-E3149.
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Portraits of Javier Portilla, Jeremy Freeman, Josh McDermott, Corey Ziemba

and Tony Movshon removed due to copyright restrictions. Please see the video.
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