

Large-scale Incremental Machine Learning for Robotics

2nd Brains, Minds and Machines Summer School 2015/08/17

Raffaello Camoriano, PhD Fellow @IIT (iCub Facility) - UNIGE (DIBRIS) Advisors: Giorgio Metta, Lorenzo Rosasco

Modern robots are expected to operate in unstructured environments...

© The Walt Disney Company. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.

...and to learn new tasks on the fly...

© Stage 6 Films. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.

...across different modalities...

© RobotCub Consortium. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.

...throughout potentially very long time spans.

© Studio Ghibli. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.

© Ballantine Books. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.

Machine Learning to the Rescue!

Machine Learning provides a number of useful tools for facing these challenges, e.g.:

- Large-scale learning methods
- Incremental Learning
- Transfer Learning

© Toptal. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.

My Main Focuses

© RobotCub Consortium. License GPL v2.0. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.

Nyström Computational Regularization

- How to deal with a large number of examples n?
- Nyström method
 - Effective dimensionality < n
 - Approximate K drawing m << n points
 - Memory: $O(n^2) \rightarrow O(mn)$,
 - Time: $O(n^3) \rightarrow O(m^2 n + m^3)$
- A. Rudi, R. C., L. Rosasco, "Less is More: Nyström Computational Regularization", NIPS 2015 (accepted) http://arxiv.org/abs/1507.04717
- Nyström approximation as a regularization operation

\widetilde{K} K_{nm}^{-1} K_{mn}

Time Complexity

	Tikhonov KRLS
Exact formulation	$O(n^3)n_\lambda$
Incremental Nystrom formulation	$O(m_{stop}^2 n + m_{stop}^3 n_{\lambda})$

Memory Complexity

	Tikhonov KRLS
Exact formulation	$O(n^2)$
Nystrom formulation	O(mn)

Nyström Computational Regularization

- Naive Nystrom KRLS: Compute a kernel approximation with a large m and then regularize with λ .
- Waste of resources (time & memory).
- Our variant of Nyström KRLS:
- Regularization can be viewed as "discarding" irrelevant eigencomponents
- *m:* trade-off parameter controlling both computational complexity <u>and</u> regularization

Incremental Object Recognition

- Scenario:
 - iCub detects an unknown object, which it cannot recognize with sufficient confidence
 - It shall be able to update its object recognition model adding a new class, without retraining from scratch (unsustainable in the lifelong learning setting)
 - This can be done, e.g. by means of a slight extension of RLS and proper reweighting
 - Open question: How to change the amount of regularization efficiently as *n* grows in time?

System Identification and Estimation

© IEEE. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/. Source: Camoriano, Raffaello, Silvio Traversaro, Lorenzo Rosasco, Giorgio Metta, and Francesco Nori. "Incremental semiparametric inverse dynamics learning." In Robotics and Automation (ICRA), 2016 IEEE International Conference on, pp. 544-550. IEEE, 2016.

- Instance of incremental learning in the robotic motion domain
- Semiparametric inverse dynamics estimation and inertial parameters identification
- $[f; \tau] = ID(q, dq/dt, d^2q/dt^2)$ Multiple output regression problem
 - IN: q, dq/dt , d^2q/dt^2 for the first 4 arm joints (shoulder + elbow)
 - OUT: Wrench (generalized force) measured by the F/T sensor placed in the arm
- Challenges:
 - Interpretability (join together physics-based parametric modeling and "black-box" nonparametrics)
 - Accuracy (beyond rigid body dynamics models, e.g. flexible bodies)
 - Adaptivity (the model adapts incrementally to change in system or environmental properties)

System Identification and Estimation

© IEEE. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/. Source: Camoriano, Raffaello, Silvio Traversaro, Lorenzo Rosasco, Giorgio Metta, and Francesco Nori. "Incremental semiparametric inverse dynamics learning." In Robotics and Automation (ICRA), 2016 IEEE International Conference on, pp. 544-550. IEEE, 2016.

The GURLS Library

- Grand Unified Regularized Least Squares
- Complete library for linear and kernel RLS
- Supports large-scale datasets
- MATLAB[®] and C++ APIs
- https://github.com/LCSL/GURLS
- Maintainers:
 - Alessandro Rudi
 - Matteo Santoro
 - Andrea Schiappacasse
 - Me

Section 2017 Content of Machine Learning Research. Volume 14, 3201-3205, 2013.

MIT OpenCourseWare https://ocw.mit.edu

Resource: Brains, Minds and Machines Summer Course Tomaso Poggio and Gabriel Kreiman

The following may not correspond to a particular course on MIT OpenCourseWare, but has been provided by the author as an individual learning resource.

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.